Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(12): e12388, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032323

RESUMO

In the past decade, extracellular vesicles (EVs) have attracted substantial interest in biomedicine. With progress in the field, we have an increasing understanding of cellular responses to EVs. In this Technical Report, we describe the direct nanoinjection of EVs into the cytoplasm of single cells of different cell lines. By using robotic fluidic force microscopy (robotic FluidFM), nanoinjection of GFP positive EVs and EV-like particles into single live HeLa, H9c2, MDA-MB-231 and LCLC-103H cells proved to be feasible. This injection platform offered the advantage of high cell selectivity and efficiency. The nanoinjected EVs were initially localized in concentrated spot-like regions within the cytoplasm. Later, they were transported towards the periphery of the cells. Based on our proof-of-principle data, robotic FluidFM is suitable for targeting single living cells by EVs and may lead to information about intracellular EV cargo delivery at a single-cell level.


Assuntos
Vesículas Extracelulares , Procedimentos Cirúrgicos Robóticos , Humanos , Microscopia de Força Atômica , Transporte Biológico , Células HeLa
2.
Membranes (Basel) ; 13(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37103858

RESUMO

Cardiomyopathies are leading causes of human mortality. Recent data indicate that the cardiomyocyte-derived extracellular vesicles (EVs) released upon cardiac injury are present in circulation. This paper aimed to analyze EVs released under normal and hypoxic conditions by H9c2 (rat), AC16 (human) and HL1 (mouse) cardiac cell lines. Small (sEVs), medium (mEVs) and large EVs (lEVs) were separated from a conditioned medium by a combination of gravity filtration, differential centrifugation and tangential flow filtration. The EVs were characterized by microBCA, SPV lipid assay, nanoparticle tracking analysis, transmission and immunogold electron microscopy, flow cytometry and Western blotting. Proteomic profiles of the EVs were determined. Surprisingly, an endoplasmic reticulum chaperone, endoplasmin (ENPL, grp94 or gp96), was identified in the EV samples, and its association with EVs was validated. The secretion and uptake of ENPL was followed by confocal microscopy using GFP-ENPL fusion protein expressing HL1 cells. We identified ENPL as an internal cargo of cardiomyocyte-derived mEVs and sEVs. Based on our proteomic analysis, its presence in EVs was linked to hypoxia in HL1 and H9c2 cells, and we hypothesize that EV-associated ENPL may have a cardioprotective role by reducing cardiomyocyte ER stress.

3.
Nutr Metab (Lond) ; 20(1): 19, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004042

RESUMO

BACKGROUND: High fat diet (HFD) increases the likelihood of dyslipidemia, which can be a serious risk factor for atherosclerosis, diabetes or hepatosteatosis. Although changes in different blood lipid levels were broadly investigated, such alterations in the liver tissue have not been studied before. The aim of the current study was to investigate the effect of HFD on hepatic triglyceride (TG), diglyceride (DG) and ceramide (CER) levels and on the expression of four key genes involved in lipid homeostasis (Pcsk9, Ldlr, Cd36 and Anxa2) in the liver. In addition, the potential role of PCSK9 in the observed changes was further investigated by using PCSK9 deficient mice. METHODS: We used two in vivo models: mice kept on HFD for 20 weeks and PCSK9-/- mice. The amount of the major TGs, DGs and CERs was measured by using HPLC-MS/MS analysis. The expression profiles of four lipid related genes, namely Pcsk9, Ldlr, Cd36 and Anxa2 were assessed. Co-localization studies were performed by confocal microscopy. RESULTS: In HFD mice, hepatic PCSK9 expression was decreased and ANXA2 expression was increased both on mRNA and protein levels, and the amount of LDLR and CD36 receptor proteins was increased. While LDLR protein level was also elevated in the livers of PCSK9-/- mice, there was no significant change in the expression of ANXA2 and CD36 in these animals. HFD induced a significant elevation in the hepatic levels of all measured TG and DG but not of CER types, and increased the proportion of monounsaturated vs. saturated TGs and DGs. Similar changes were detected in the hepatic lipid profiles of HFD and PCSK9-/- mice. Co-localization of PCSK9 with LDLR, CD36 and ANXA2 was verified in HepG2 cells. CONCLUSIONS: Our results show that obesogenic HFD downregulates PCSK9 expression in the liver and causes alterations in the hepatic lipid accumulation, which resemble those observed in PCSK9 deficiency. These findings suggest that PCSK9-mediated modulation of LDLR and CD36 expression might contribute to the HFD-induced changes in lipid homeostasis.

4.
J Mol Cell Cardiol ; 165: 19-30, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34959166

RESUMO

BACKGROUND: Cardiac cell lines and primary cells are widely used in cardiovascular research. Despite increasing number of publications using these models, comparative characterization of these cell lines has not been performed, therefore, their limitations are undetermined. We aimed to compare cardiac cell lines to primary cardiomyocytes and to mature cardiac tissues in a systematic manner. METHODS AND RESULTS: Cardiac cell lines (H9C2, AC16, HL-1) were differentiated with widely used protocols. Left ventricular tissue, neonatal primary cardiomyocytes, and human induced pluripotent stem cell-derived cardiomyocytes served as reference tissue or cells. RNA expression of cardiac markers (e.g. Tnnt2, Ryr2) was markedly lower in cell lines compared to references. Differentiation induced increase in cardiac- and decrease in embryonic markers however, the overall transcriptomic profile and annotation to relevant biological processes showed consistently less pronounced cardiac phenotype in all cell lines in comparison to the corresponding references. Immunocytochemistry confirmed low expressions of structural protein sarcomeric alpha-actinin, troponin I and caveolin-3 in cell lines. Susceptibility of cell lines to sI/R injury in terms of viability as well as mitochondrial polarization differed from the primary cells irrespective of their degree of differentiation. CONCLUSION: Expression patterns of cardiomyocyte markers and whole transcriptomic profile, as well as response to sI/R, and to hypertrophic stimuli indicate low-to-moderate similarity of cell lines to primary cells/cardiac tissues regardless their differentiation. Low resemblance of cell lines to mature adult cardiac tissue limits their potential use. Low translational value should be taken into account while choosing a particular cell line to model cardiomyocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Fenótipo , Transcriptoma
5.
Cell Mol Life Sci ; 78(23): 7589-7604, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34665280

RESUMO

Liver plays a central role in elimination of circulating extracellular vesicles (EVs), and it also significantly contributes to EV release. However, the involvement of the different liver cell populations remains unknown. Here, we investigated EV uptake and release both in normolipemia and hyperlipidemia. C57BL/6 mice were kept on high fat diet for 20-30 weeks before circulating EV profiles were determined. In addition, control mice were intravenously injected with 99mTc-HYNIC-Duramycin labeled EVs, and an hour later, biodistribution was analyzed by SPECT/CT. In vitro, isolated liver cell types were tested for EV release and uptake with/without prior fatty acid treatment. We detected an elevated circulating EV number after the high fat diet. To clarify the differential involvement of liver cell types, we carried out in vitro experiments. We found an increased release of EVs by primary hepatocytes at concentrations of fatty acids comparable to what is characteristic for hyperlipidemia. When investigating EV biodistribution with 99mTc-labeled EVs, we detected EV accumulation primarily in the liver upon intravenous injection of mice with medium (326.3 ± 19.8 nm) and small EVs (130.5 ± 5.8 nm). In vitro, we found that medium and small EVs were preferentially taken up by Kupffer cells, and liver sinusoidal endothelial cells, respectively. Finally, we demonstrated that in hyperlipidemia, there was a decreased EV uptake both by Kupffer cells and liver sinusoidal endothelial cells. Our data suggest that hyperlipidema increases the release and reduces the uptake of EVs by liver cells. We also provide evidence for a size-dependent differential EV uptake by the different cell types of the liver. The EV radiolabeling protocol using 99mTc-Duramycin may provide a fast and simple labeling approach for SPECT/CT imaging of EVs biodistribution.


Assuntos
Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Hepatócitos/metabolismo , Hiperlipidemias/fisiopatologia , Fígado/metabolismo , Animais , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Front Plant Sci ; 12: 658987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093616

RESUMO

Iron (Fe) is an essential micronutrient for plants. Due to the requirement for Fe of the photosynthetic apparatus, the majority of shoot Fe content is localised in the chloroplasts of mesophyll cells. The reduction-based mechanism has prime importance in the Fe uptake of chloroplasts operated by Ferric Reductase Oxidase 7 (FRO7) in the inner chloroplast envelope membrane. Orthologue of Arabidopsis thaliana FRO7 was identified in the Brassica napus genome. GFP-tagged construct of BnFRO7 showed integration to the chloroplast. The time-scale expression pattern of BnFRO7 was studied under three different conditions: deficient, optimal, and supraoptimal Fe nutrition in both leaves developed before and during the treatments. Although Fe deficiency has not increased BnFRO7 expression, the slight overload in the Fe nutrition of the plants induced significant alterations in both the pattern and extent of its expression leading to the transcript level suppression. The Fe uptake of isolated chloroplasts decreased under both Fe deficiency and supraoptimal Fe nutrition. Since the enzymatic characteristics of the ferric chelate reductase (FCR) activity of purified chloroplast inner envelope membranes showed a significant loss for the substrate affinity with an unchanged saturation rate, protein level regulation mechanisms are suggested to be also involved in the suppression of the reduction-based Fe uptake of chloroplasts together with the saturation of the requirement for Fe.

7.
Front Immunol ; 11: 794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431708

RESUMO

C1-inhibitor (C1-INH) is an important regulator of the complement, coagulation, fibrinolytic and contact systems. The quantity of protease/C1-INH complexes in the blood is proportional to the level of the in vivo activation of these four cascade-like plasma enzyme systems. Parallel determination of C1-INH-containing activation complexes could be important to understand the regulatory role of C1-INH in diseases such as hereditary angioedema (HAE) due to C1-INH deficiency (C1-INH-HAE). We developed in-house ELISAs to measure the concentration of complexes of C1-INH formed with active proteases: C1r, C1s, MASP-1, MASP-2, plasma kallikrein, factor XIIa, factor XIa, and thrombin, as well as to determine total and functionally active C1-INH. We measured the concentration of the complexes in EDTA plasma from 6 healthy controls, from 5 with type I and 5 with type II C1-INH-HAE patients during symptom-free periods and from five patients during HAE attacks. We also assessed the concentration of these complexes in blood samples taken from one C1-INH-HAE patient during the kinetic follow-up of a HAE attack. The overall pattern of complexed C1-INH was similar in controls and C1-INH-HAE patients. C1-INH formed the highest concentration complexes with C1r and C1s. We observed higher plasma kallikrein/C1-INH complex concentration in both type I and type II C1-INH-HAE, and higher concentration of MASP-1/C1-INH, and MASP-2/C1-INH complexes in type II C1-INH-HAE patients compared to healthy controls and type I patients. Interestingly, none of the C1-INH complex concentrations changed significantly during HAE attacks. During the kinetic follow-up of an HAE attack, the concentration of plasma kallikrein/C1-INH complex was elevated at the onset of the attack. In parallel, C1r, FXIIa and FXIa complexes of C1-INH also tended to be elevated, and the changes in the concentrations of the complexes followed rather rapid kinetics. Our results suggest that the complement classical pathway plays a critical role in the metabolism of C1-INH, however, in C1-INH-HAE, contact system activation is the most significant in this respect. Due to the fast changes in the concentration of complexes, high resolution kinetic follow-up studies are needed to clarify the precise molecular background of C1-INH-HAE pathogenesis.


Assuntos
Proteína Inibidora do Complemento C1/metabolismo , Angioedema Hereditário Tipos I e II/sangue , Complexos Multiproteicos/sangue , Serina Proteases/sangue , Adulto , Idoso , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
J Extracell Vesicles ; 10(1): e12023, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33708356

RESUMO

Mast cells have been shown to release extracellular vesicles (EVs) in vitro. However, EV-mediated mast cell communication in vivo remains unexplored. Primary mast cells from GFP-transgenic and wild type mice, were grown in the presence or absence of lipopolysaccharide (LPS), and the secreted EVs were separated from the conditioned media. Mast cell-derived EVs were next cultured with LPS-naïve mast cells, and the induction of TNF-α expression was monitored. In addition, primary mast cells were seeded in diffusion chambers that were implanted into the peritoneal cavities of mice. Diffusion chambers enabled the release of GFP+ mast cell-derived EVs in vivo into the peritoneal cavity. Peritoneal lavage cells were assessed for the uptake of GFP+ EVs and for TNF-α production. In vitro, LPS-stimulated mast cell-derived EVs were efficiently taken up by non-stimulated mast cells, and induced TNF-α expression in a TLR4, JNK and P38 MAPK dependent manner. In vivo, using implanted diffusion chambers, we confirmed the release and transmission of mast cell-derived EVs to other mast cells with subsequent induction of TNF-α expression. These data show an EV-mediated spreading of pro-inflammatory response between mast cells, and provide the first in vivo evidence for the biological role of mast cell-derived EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Sistema de Sinalização das MAP Quinases , Mastócitos/metabolismo , Animais , Células Cultivadas , Vesículas Extracelulares/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Transgênicos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
9.
J Extracell Vesicles ; 8(1): 1565263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30728922

RESUMO

The field of extracellular vesicles (EVs) is an exponentially growing segment of biomedical sciences. However, the problems of normalisation and quantification of EV samples have not been completely solved. Currently, EV samples are standardised on the basis of their protein content sometimes combined with determination of the particle number. However, even this combined approach may result in inaccuracy and overestimation of the EV concentration. Lipid bilayers are indispensable components of EVs. Therefore, a lipid-based quantification, in combination with the determination of particle count and/or protein content, appears to be a straightforward and logical approach for the EV field. In this study, we set the goal to improve the previously reported sulfo-phospho-vanillin (SPV) lipid assay. We introduced an aqueous phase liposome standard (DOPC) to replace the purified lipid standards in organic solvents (used commonly in previous studies). Furthermore, we optimised the concentration of the vanillin reagent in the assay. We found that elimination of organic solvents from the reaction mixture could abolish the background colour that interfered with the assay. Comparison of the optimised assay with a commercial lipid kit (based on the original SPV lipid assay) showed an increase of sensitivity by approximately one order of magnitude. Thus, here we report a quick, reliable and sensitive test that may fill an existing gap in EV standardisation. When using the optimised lipid assay reported here, EV lipid measurements can be more reliable than protein-based measurements. Furthermore, this novel assay is almost as sensitive and as easy as measuring proteins with a simple BCA test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...