Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16077, 2024 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992241

RESUMO

Traditionally, constructing training datasets for automatic muscle segmentation from medical images involved skilled operators, leading to high labor costs and limited scalability. To address this issue, we developed a tool that enables efficient annotation by non-experts and assessed its effectiveness for training an automatic segmentation network. Our system allows users to deform a template three-dimensional (3D) anatomical model to fit a target magnetic-resonance image using free-form deformation with independent control points for axial, sagittal, and coronal directions. This method simplifies the annotation process by allowing non-experts to intuitively adjust the model, enabling simultaneous annotation of all muscles in the template. We evaluated the quality of the tool-assisted segmentation performed by non-experts, which achieved a Dice coefficient greater than 0.75 compared to expert segmentation, without significant errors such as mislabeling adjacent muscles or omitting musculature. An automatic segmentation network trained with datasets created using this tool demonstrated performance comparable to or superior to that of networks trained with expert-generated datasets. This innovative tool significantly reduces the time and labor costs associated with dataset creation for automatic muscle segmentation, potentially revolutionizing medical image annotation and accelerating the development of deep learning-based segmentation networks in various clinical applications.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Masculino , Músculo Esquelético , Feminino , Adulto , Aprendizado Profundo , Algoritmos
2.
Cureus ; 16(5): e59678, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38836162

RESUMO

Purpose According to a previous study, asymmetrical kneeling, such as sitting sideways, does not exhibit asymmetrical movements. Rotational analyses of each femur and tibia help explain why rotational knee kinematics while sitting sideways do not exhibit asymmetrical movement. We aimed to assess the rotation of the femur and tibia in normal knees while sitting sideways. Methods Each volunteer sat sideways under fluoroscopy. Two-dimensional and three-dimensional registration techniques were used. After evaluating the femoral rotation angle relative to the tibia at each flexion angle, the femoral and tibial sole rotation angles at each flexion angle were compared between the ipsilateral and contralateral knees. Results While sitting sideways, both knees showed femoral external rotation relative to the tibia with flexion. In the ipsilateral knees, the femurs exhibited an external rotation of 26.3 ± 8.0°, from 110° to 150° of flexion. Conversely, the tibia exhibited an external rotation of 12.2 ± 7.8°, from 110° to 150° of flexion. From 110° to 150° of flexion, femoral external rotation was significantly larger than tibial external rotation. In the contralateral knees, the femurs exhibited an internal rotation of 23.8 ± 6.3°, from 110° to 150° of flexion (110°, p < 0.001; 120°, p < 0.001; 130°, p < 0.001; 140°, p < 0.001; and 150°, p < 0.001). Contrastingly, the tibia exhibited an internal rotation of 30.4 ± 8.8°, from 110° to 150° of flexion, which was significantly larger than femoral internal rotation (110°, p = 0.002; 120°, p < 0.001; 130°, p < 0.001; 140°, p < 0.001; and 150°, p < 0.001). Conclusions Although bilateral knees exhibited femoral external rotation relative to the tibia while sitting sideways, the ipsilateral and contralateral knees showed femoral and tibial sole rotations in opposite directions. In particular, the contralateral knees might show a strained movement because both femurs and tibias exhibited internal rotation with flexion. Patients who have undergone guided-motion total knee arthroplasty (TKA) or medial-pivot TKAs might be advised to avoid sitting sideways.

3.
J Sports Med Phys Fitness ; 64(6): 567-577, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436594

RESUMO

BACKGROUND: Anterior cruciate ligament injury frequently occurs in the deceleration with the knee-extended position. In addition, a rapid hip internal rotation is concomitantly observed. However, how the extended knee position induces the hip internal rotation is unclear. METHODS: Sixteen healthy participants performed the simulated foot impact task on the experimental chair. To vary the knee flexion angle, the following four-foot placement positions relative to the pelvis segment, i.e.: 1) near; 2) middle; 3) far; and 4) far + heel strike, were tested. The reflective marker positions and the ground reaction force (GRF) data were collected. The moment of inertia of the entire lower limb around its long axis as well as the peak hip internal rotation angular velocity were calculated and compared among four conditions (Wilcoxon Signed-Rank Test with Bonferroni correction, P<0.0083). RESULTS: As the knee extended from the near to far + heel strike condition, the moment of inertia of the entire lower limb significantly decreased and hip internal rotation angular velocity significantly increased (P<0.001). CONCLUSIONS: The extended knee position with far foot placement from torso reduces the inertial resistance of the entire lower limb around its long axis and is vulnerable to the hip internal rotation.


Assuntos
Lesões do Ligamento Cruzado Anterior , , Humanos , Fenômenos Biomecânicos , Masculino , Rotação , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Feminino , Pé/fisiologia , Adulto Jovem , Adulto , Extremidade Inferior/fisiologia , Quadril/fisiologia
4.
Sci Rep ; 14(1): 3250, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332045

RESUMO

This study analyzed 31 patients with symptomatic osteoarthritic knees scheduled to undergo knee arthroplasty or high tibial osteotomy and demonstrated shape variations in their proximal tibia using an average three-dimensional (3D) bone model. Preoperative computed tomography of the affected knees was reconstructed as 3D bone models using a triangle mesh of surface layers. The initial case was defined as the template, and the other models were reconstructed into homologous models with the same number of mesh vertices as that in the template. The corresponding mesh vertices of the other models were averaged to evaluate the spatial position on the particular mesh vertex of the template. This was applied to all the mesh vertices of the template to generate the average 3D model. To quantify the variation in surface geometry, average minimum distance from the average bone model to 31 models was recorded. The medial proximal tibial cortex (1.63 mm) revealed lesser variation compared to the tibial tuberosity (2.50 mm) and lateral cortex (2.38 mm), (p = 0.004 and p = 0.020, respectively). The medial tibial plateau (1.46 mm) revealed larger variation compared to the lateral tibial plateau (1.16 mm) (p = 0.044). Understanding 3D geometry could help in development of implants for arthroplasty and knee osteotomy.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Humanos , Tíbia/cirurgia , Japão , Joelho/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Artroplastia do Joelho/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Estudos Retrospectivos
5.
Gait Posture ; 109: 56-63, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38277765

RESUMO

BACKGROUND: Ankle sprains are common and cause persistent ankle function reduction. To biomechanically evaluate the ankle function after ankle sprains, the ground reaction force (GRF) measurement during the single-legged landing had been used. However, previous studies focused on discrete features of vertical GRF (vGRF), which largely ignored vGRF waveform features that could better identify the ankle function. PURPOSE: To identify how the history of ankle sprain affect the vGRF waveform during the single-legged landing with unsupervised machine learning considering the time-series information of vGRF. METHODS: Eighty-seven currently healthy basketball athletes (12 athletes without ankle sprain, 49 athletes with bilateral, and 26 athletes with unilateral ankle sprain more than 6 months before the test day) performed single-legged landings from a 20 centimeters (cm) high box onto the force platform. Totally 518 trials vGRF data were collected from 87 athletes of 174 ankles, including 259 ankle sprain trials (from previous sprain ankles) and 259 non-ankle sprain trials (from without sprain ankles). The first 100 milliseconds (ms) vGRF waveforms after landing were extracted. Principal component analysis (PCA) was applied to the vGRF data, selecting 8 principal components (PCs) representing 96% of the information. Based on these 8 PCs, k-means method (k = 3) clustered the 518 trials into three clusters. Chi-square test assessed significant differences (p < 0.01) in the distribution of ankle sprain and non-ankle sprain trials among clusters. FINDINGS: The ankle sprain trials accounted for a significantly larger percentage (63.9%) in Cluster 3, which exhibited rapidly increased impulse vGRF waveforms with larger peaks in a short time. SIGNIFICANCE: PCA and k-means method for vGRF waveforms during single-legged landing identified that the history of previous ankle sprains caused a loss of ankle absorption ability lasting at least 6 months from an ankle sprain.


Assuntos
Traumatismos do Tornozelo , Entorses e Distensões , Humanos , Aprendizado de Máquina não Supervisionado , Traumatismos do Tornozelo/complicações , Extremidade Inferior , Tornozelo , Entorses e Distensões/complicações
6.
Sci Rep ; 14(1): 249, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167742

RESUMO

Tennis is a popular leisure sport, and studies have indicated that playing tennis regularly provides many health benefits. We aimed to clarify the characteristics of physical activity during beginner-level group tennis lessons and daily physical activity of the participants. Physical activity was measured using an accelerometer sensor device for four weeks, including the 80-min duration tennis lessons held twice a week. Valid data were categorized for tennis and non-tennis days. The mean physical activity intensity during the tennis lesson was 3.37 METs. The mean ratio of short-bout rest periods to the tennis lesson time in 90 and 120 s was 7% and 4%, respectively. The mean physical activity intensity was significantly higher (p < 0.0001) and the duration of vigorous-intensity physical activity (VPA) was increased in 76% of participants on days with tennis lessons compared to without tennis lessons. Beginner-level tennis lesson has characteristics of less short-bout rest physical activity than previously reported competitive tennis match and increased the duration of VPA in daily activity compared to without tennis lessons, suggesting that beginner-level tennis lessons contribute physical activity of health benefits.


Assuntos
Esportes , Tênis , Humanos , Exercício Físico , Fatores de Tempo , Descanso
7.
J Sport Health Sci ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38030065

RESUMO

BACKGROUND: Combined knee valgus and tibial internal rotation (VL + IR) moments have been shown to stress the anterior cruciate ligament (ACL) in several in vitro cadaveric studies. To utilize this knowledge for non-contact ACL injury prevention in sports, it is necessary to elucidate how the ground reaction force (GRF) acting point (center of pressure (CoP)) in the stance foot produces combined knee VL + IR moments in risky maneuvers, such as cuttings. However, the effects of the GRF acting point on the development of the combined knee VL + IR moment in cutting are still unknown. METHODS: We first established the deterministic mechanical condition that the CoP position relative to the tibial rotational axis differentiates the GRF vector's directional probability for developing the combined knee VL + IR moment, and theoretically predicted that when the CoP is posterior to the tibial rotational axis, the GRF vector is more likely to produce the combined knee VL + IR moment than when the CoP is anterior to the tibial rotational axis. Then, we tested a stochastic aspect of our theory in a lab-controlled in vivo experiment. Fourteen females performed 60° cutting under forefoot/rearfoot strike conditions (10 trials each). The positions of lower limb markers and GRF data were measured, and the knee moment due to GRF vector was calculated. The trials were divided into anterior- and posterior-CoP groups depending on the CoP position relative to the tibial rotational axis at each 10 ms interval from 0 to 100 ms after foot strike, and the occurrence rate of the combined knee VL + IR moment was compared between trial groups. RESULTS: The posterior-CoP group showed significantly higher occurrence rates of the combined knee VL + IR moment (maximum of 82.8%) at every time point than those of the anterior-CoP trials, as theoretically predicted by the deterministic mechanical condition. CONCLUSION: The rearfoot strikes inducing the posterior CoP should be avoided to reduce the risk of non-contact ACL injury associated with the combined knee VL + IR stress.

8.
Clin Biomech (Bristol, Avon) ; 109: 106098, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37729737

RESUMO

BACKGROUND: Difference in the finite helical axis of the knee joints before and after anterior cruciate ligament-preserving knee arthroplasties such as unicompartmental knee arthroplasty and bi-cruciate-retaining total knee arthroplasty remains unknown. This study compared the knee finite helical axes before and after bi-cruciate-preserving knee arthroplasty. METHODS: Patients undergoing medial unicompartmental knee arthroplasty and bi-cruciate-retaining total knee arthroplasty were included. Under fluoroscopy, participants performed a deep knee bend before and after surgery. A two/three-dimensional registration technique was employed to measure tibiofemoral kinematics. Femoral finite helical axis was calculated in a flexion range of 0-120° using 30° windows (early-, mid-, late-, and deep-flexion phases). FINDINGS: In unicompartmental knee arthroplasty, the preoperative knee vertical angle was larger than the postoperative vertical angle in mid- and deep-flexion phases. The postoperative knee vertical angle was smaller in unicompartmental knee arthroplasty than in bi-cruciate-retaining total knee arthroplasty. In unicompartmental knee arthroplasty, the preoperative horizontal angle was smaller than the postoperative horizontal angle in the early-flexion phase. However, in bi-cruciate-retaining total knee arthroplasty, the preoperative horizontal angle was larger than the postoperative horizontal angle in mid- and deep-flexion phases. The horizontal angle was smaller before unicompartmental knee arthroplasty than that before bi-cruciate-retaining total knee arthroplasty in early-, mid-, and deep-flexion phases. However, the vertical angle was larger after unicompartmental knee arthroplasty than that after bi-cruciate-retaining total knee arthroplasty in the early-flexion phase. INTERPRETATION: The knee finite helical axes before and after unicompartmental knee arthroplasty differed from those before and after bi-cruciate-retaining total knee arthroplasty.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Humanos , Artroplastia do Joelho/métodos , Articulação do Joelho/cirurgia , Ligamento Cruzado Anterior/cirurgia , Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Amplitude de Movimento Articular , Fenômenos Biomecânicos
9.
Orthop J Sports Med ; 11(7): 23259671231177312, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37435428

RESUMO

Background: Precise postural control helps prevent anterior cruciate ligament injury. However, it is unknown whether the anticipated postural stability can be improved during a physically uncertain and cognitively demanding task. Hypothesis: Anticipated postural stability will improve through unanticipated single-leg landing with a rapid foot placement target tracking. Study Design: Controlled laboratory study. Methods: A total of 22 healthy female university-level athletes performed a novel dual-task paradigm: an unanticipated single-leg landing with foot placement target tracking. In the normal condition (60 trials), the participants jumped from a 20 cm-high box onto the landing target with their dominant leg as softly as possible. In the subsequent perturbation condition (PC) (60 trials), the initially assigned landing target was abruptly switched randomly, requiring participants to modify their preplanned foot placement position to the newly assigned position. The center-of-pressure trajectory length within the first 100 ms after foot impact (CoP100) was calculated as a measure of anticipated postural stability for each trial. In addition, the peak vertical ground-reaction force (FzPeak) was quantified to assess landing load, and the degree of postural adaptation during PC was quantified by fitting an exponential function to trial-by-trial changes in CoP100. Participants were divided into 2 groups according to increase or decrease in CoP100, and results were compared between the groups. Results: The direction and magnitude of postural sway alterations of the 22 participants showed a spectrum-like variation during the repeated trials. Twelve participants (sway-decreased group) exhibited a gradual reduction in postural sway (CoP100) during the PC, while the remaining 10 participants (sway-increased group) showed a gradual increase in CoP100. The FzPeak during the PC was significantly less in the sway-decreased group compared with the sway-increased group (P < .05). Conclusion: Variation in the direction and magnitude of postural sway alteration among participants suggested that there was individual variation in an athlete's adaptive ability of the anticipated postural stability. Clinical Relevance: The novel dual-task paradigm described in this study may be useful for rating individual injury risk based on an athlete's postural adaptation ability and may aid in targeted prevention strategies.

10.
Front Physiol ; 14: 1161182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035679

RESUMO

Introduction: With the widespread use of wearable sensors, various methods to evaluate external physical loads using acceleration signals measured by inertial sensors in sporting activities have been proposed. Acceleration-derived external physical loads have been evaluated as a simple indicator, such as the mean or cumulative values of the target interval. However, such a conventional simplified indicator may not adequately represent the features of the external physical load in sporting activities involving various movement intensities. Therefore, we propose a method to evaluate the external physical load of tennis player based on the histogram of acceleration-derived signal obtained from wearable inertial sensors. Methods: Twenty-eight matches of 14 male collegiate players and 55 matches of 55 male middle-aged players wore sportswear-type wearable sensors during official tennis matches. The norm of the three-dimensional acceleration signal measured using the wearable sensor was smoothed, and the rest period (less than 0.3 G of at least 5 s) was excluded. Because the histogram of the processed acceleration signal showed a bimodal distribution, for example, high- and low-intensity peaks, a Gaussian mixture model was fitted to the histogram, and the model parameters were obtained to characterize the bimodal distribution of the acceleration signal for each player. Results: Among the obtained Gaussian mixture model parameters, the linear discrimination analysis revealed that the mean and standard deviation of the high-intensity side acceleration value accurately classified collegiate and middle-aged players with 93% accuracy; however, the conventional method (only the overall mean) showed less accurate classification results (63%). Conclusion: The mean and standard deviation of the high-intensity side extracted by the Gaussian mixture modeling is found to be the effective parameter representing the external physical load of tennis players. The histogram-based feature extraction of the acceleration-derived signal that exhibit multimodal distribution may provide a novel insight into monitoring external physical load in other sporting activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA