Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509165

RESUMO

Although structurally similar to type II counterparts, type I or activin receptor-like kinases (ALKs) are set apart by a metastable helix-loop-helix (HLH) element preceding the protein kinase domain that, according to a longstanding paradigm, serves passive albeit critical roles as an inhibitor-to-substrate-binding switch. A single recurrent mutation in the codon of the penultimate residue, directly adjacent the position of a constitutively activating substitution, causes milder activation of ACVR1/ALK2 leading to sporadic heterotopic bone deposition in patients presenting with fibrodysplasia ossificans progressiva, or FOP. To determine the protein structural-functional basis for the gain of function, R206H mutant, Q207D (aspartate-substituted caALK2) and HLH subdomain-truncated (208 Ntrunc) forms were compared to one another and the wild-type enzyme through in vitro kinase and protein-protein interaction analyses that were complemented by signaling read-out (p-Smad) in primary mouse embryonic fibroblasts and Drosophila S2 cells. Contrary to the paradigm, the HLH subdomain actively suppressed the phosphotransferase activity of the enzyme, even in the absence of FKBP12. Unexpectedly, perturbation of the HLH subdomain elevated kinase activity at a distance, i.e., allosterically, at the ATP-binding and polypeptide-interacting active site cleft. Accessibility to polypeptide substrate (BMP Smad C-terminal tails) due to allosterically altered conformations of type I active sites within heterohexameric cytoplasmic signaling complexes-assembled noncanonically by activin-type II receptors extracellularly-is hypothesized to produce a gain of function of the R206H mutant protein responsible for episodic heterotopic ossification in FOP.


Assuntos
Receptores de Ativinas Tipo I , Mutação com Ganho de Função , Animais , Camundongos , Receptores de Ativinas/genética , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Fibroblastos/metabolismo , Mutação , Peptídeos/genética
2.
J Matern Fetal Neonatal Med ; 35(3): 447-456, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32041426

RESUMO

INTRODUCTION: Fetal growth restriction (FGR), viz., birth weight <10th percentile is a common pregnancy complication which increases the risk of adverse fetal and newborn outcomes. The placenta is the key organ for fetal growth as it controls oxygen and nutrient availability. This study aims to elucidate the mechanisms of and identify putative placental biomarkers for FGR using high-resolution metabolomics. METHODS: Placenta samples from 19 FGR cases and 30 controls were analyzed using proton magnetic resonance (1H NMR) spectroscopy and direct flow injection mass spectrometry with reverse-phase liquid-chromatography mass spectrometry (DI-LC-MS/MS). Significant concentration differences (p-value <.05) in 179 of the 220 metabolites were measured. RESULTS: Of the 179 metabolites, 176 (98.3%) had reduced placental levels in FGR cases. The best performing metabolite model: 3-hydroxybutyrate, glycine and PCaaC42:0 achieved an AUC (95% CI) = 0.912 (0.814-1.000) with a sensitivity of 86.7% and specificity of 84.2% for FGR detection. Metabolite set enrichment analysis (MSEA) revealed significant (p < .05) perturbation of multiple placental metabolite pathways including urea metabolism, ammonia recycling, porphyrin metabolism, bile acid biosynthesis, galactose metabolism and perturbed protein biosynthesis. CONCLUSION: The placental metabolic pathway analysis revealed abnormalities that are consistent with fetal hepatic dysfunction in FGR. Near global reduction of metabolite concentrations was found in the placenta from FGR cases and metabolites demonstrated excellent diagnostic accuracy for FGR detection.


Assuntos
Retardo do Crescimento Fetal , Placenta , Cromatografia Líquida , Feminino , Retardo do Crescimento Fetal/diagnóstico , Humanos , Recém-Nascido , Metabolômica , Gravidez , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA