Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(13): 7724-7734, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32870215

RESUMO

Two-dimensional hydrogen boride (HB) sheets were recently demonstrated to act as a solid acid catalyst in their hydrogen-deficient state. However, both the active sites and the mechanism of the catalytic process require further elucidation. In this study, we analyzed the conversion of ethanol adsorbed on HB sheets under vacuum during heating using in situ Fourier transform infrared (FT-IR) absorption spectroscopy with isotope labelling. Up to 450 K, the FT-IR peak associated with the OH group of the adsorbed ethanol molecule disappeared from the spectrum, which was attributed to a dehydration reaction with a hydrogen atom from the HB sheet, resulting in the formation of an ethyl species. At temperatures above 440 K, the number of BD bonds markedly increased in CD3CH2OH, compared to CH3CD2OH; the temperature dependence of the formation rate of BD bonds was similar to that of the dehydration reaction rate of ethanol on HB sheets under steady-state conditions. The rate-determining step of the dehydration of ethanol on HB was thus ascribed to the dehydrogenation of the methyl group of the ethyl species on the HB sheets, followed by the immediate desorption of ethylene. These results show that the catalytic ethanol dehydration process on HB involves the hydrogen atoms of the HB sheets. The obtained mechanistic insights are expected to promote the practical application of HB sheets as catalysts.

2.
Angew Chem Int Ed Engl ; 59(44): 19669-19674, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32602591

RESUMO

Encapsulating metal nanoclusters into zeolites combines the superior catalytic activity of the nanoclusters with high stability and unique shape selectivity of the crystalline microporous materials. The preparation of such bifunctional catalysts, however, is often restricted by the mismatching in time scale between the fast formation of nanoclusters and the slow crystallization of zeolites. We herein demonstrate a novel strategy to overcome the mismatching issue, in which the crystallization of zeolites is expedited so as to synchronize it with the rapid formation of nanoclusters. The concept was demonstrated by confining Pt and Sn nanoclusters into a ZSM-5 (MFI) zeolite in the course of its crystallization, leading to an ultrafast, in situ encapsulation within just 5 min. The Pt/Sn-ZSM-5 exhibited exceptional activity and selectivity with stability in the dehydrogenation of propane to propene. This method of ultrafast encapsulation opens up a new avenue for designing and synthesizing composite zeolitic materials with structural and compositional complexity.

3.
J Am Chem Soc ; 142(8): 3931-3938, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017544

RESUMO

Improving the stability of porous materials for practical applications is highly challenging. Aluminosilicate zeolites are utilized for adsorptive and catalytic applications, wherein they are sometimes exposed to high-temperature steaming conditions (∼1000 °C). As the degradation of high-silica zeolites originates from the defect sites in their frameworks, feasible defect-healing methods are highly demanded. Herein, we propose a method for healing defects to create extremely stable high-silica zeolites. High-silica (SiO2/Al2O3 > 240) zeolites with *BEA-, MFI-, and MOR-type topologies could be stabilized by significantly reducing the number of defect sites via a liquid-mediated treatment without using additional silylating agents. Upon exposure to extremely high temperature (900-1150 °C) steam, the stabilized zeolites retain their crystallinity and micropore volume, whereas the parent commercial zeolites degrade completely. The proposed self-defect-healing method provides new insights into the migration of species through porous bodies and significantly advances the practical applicability of zeolites in severe environments.

4.
Anal Sci ; 36(2): 177-181, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31474660

RESUMO

Nanometer-sized clay, allophane, was used as the matrix for matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) and applied to the ionization of small molecules. First, the laser desorption ionization mass spectrum of cation-exchanged allophane was measured, and it was found that the cation exchange proceeded smoothly with increasing atomic number of alkali metals in the periodic table. This phenomenon was explained by considering the size of the counter anion on the allophane surface. Then, fructose was measured as the analyte using each alkali-cation-exchanged allophane as the matrix. Contrary to the measurements using allophane itself, the peak intensity of fructose decreased with increasing atomic number of alkali metals in the periodic table. This phenomenon was clarified by considering the stability of alkali cation in the presence of a surface anion, the desorption energy, and the solvation enthalpy of each alkali cation. The applicability of allophane to high molecular weight compounds was also confirmed by measuring cyclodextrin, angiotensin II, and insulin. Finally, a combination of allophane and zeolite was examined by assuming proton relay among allophane, zeolite, and analyte. As a result of proton supply from zeolite to allophane, the peak intensity of the proton sponge (1,8-bis(dimethylamino)naphthalene) was enhanced by almost 2.2 times.

5.
ACS Omega ; 4(9): 14100-14104, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31497729

RESUMO

Hydrogen boride (HB) or hydrogenated borophene sheets are recently realized two-dimensional materials that are composed of only two light elements, boron and hydrogen. However, their catalytic activity has not been experimentally analyzed. Herein, we report the catalytic activity of HB sheets in ethanol reforming. HB sheets catalyze the conversion of ethanol to ethylene and water above 493 K with high selectivity, independent of the contact time, and with an apparent activation energy of 102.8 ± 5.5 kJ/mol. Hence, we identify that HB sheets act as solid-acid catalysts.

6.
Chem Commun (Camb) ; 55(20): 2896-2899, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30702094

RESUMO

The effect of reaction conditions for direct oxidation of methane to methanol over Fe-MFI zeolite with H2O2 has been investigated. Sulfolane has been proved to be an efficient solvent for liquid-phase methane oxidation. A sulfolane/water mixture with an appropriate proportion led to an extremely high methanol production with a high selectivity.

7.
Langmuir ; 34(4): 1376-1385, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29293354

RESUMO

Carbon dioxide was shown to identify surface basic properties of nitrogen-substituted microporous and mesoporous silicas, in addition to conventional basic oxides, by a detailed study using isotherm and heat of adsorption measurements as well as by infrared spectroscopy. A hydrogen-bonded weak interaction was primarily observed between CO2 and silanol (Si-OH) and silamine (Si-NH-Si) groups. The heat of adsorption of CO2 demonstrated that the latter adspecies were formed preferentially over the former, although a much higher amount of linear CO2 adspecies were found on SBA-15 mesoporous silica because of the presence of a large quantity of silanol groups on its surface. Carbamate-type chemisorbed adspecies were not detected on silamino sites, whereas carbonate-type adspecies were formed on alkali ion-exchanged zeolites and also residual sodium ions on the surface of silicalite-1. CO2 was shown to be a successful probe molecule for identifying weakly interactive hydrogen-bonding sites, and it has potential as a surface probe for strongly interactive nucleophilic sites derived from alkaline ions or a methylated silamino group, Si-N(CH3)-Si.

8.
Phys Chem Chem Phys ; 19(43): 29077-29083, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-28936524

RESUMO

Proton conduction in alkali metal ion-exchanged porous ionic crystals A2[Cr3O(OOCH)6(etpy)3]2[α-SiW12O40]·nH2O [I-A+] (A = Li, Na, K, Cs, etpy = 4-ethylpyridine) is investigated. Single crystal and powder X-ray diffraction measurements show that I-A+ possesses analogous one-dimensional channels where alkali metal ions (A+) and water of crystallization exist. Impedance spectroscopy and water diffusion measurements of I-A+ show that proton conductivities are low (10-7-10-6 S cm-1) under low relative humidity (RH), and protons mostly migrate as H3O+ with H2O as vehicles (vehicle mechanism). The proton conductivity of I-A+ increases with the increase in RH and is largely dependent on the types of alkali metal ions. I-Li+ shows a high proton conductivity of 1.9 × 10-3 S cm-1 (323 K) and a low activation energy of 0.23 eV under RH 95%. Under high RH, alkali metal ions with high ionic potentials (e.g., Li+) form a dense and extensive hydrogen-bonding network of water molecules with mobile protons at the periphery, which leads to high proton conductivities and low activation energies via rearrangement of the hydrogen-bonding network (Grotthuss mechanism).

9.
Dalton Trans ; 46(10): 3105-3109, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28074198

RESUMO

A porous ionic crystal is synthesized with a cationic Al(iii)-salphen complex (Al(iii)-salphen) and a α-Keggin-type polyoxometalate (POM). The compound possesses stable three dimensional porous structure and shows high activity as a heterogeneous catalyst in pinacol rearrangement, which is a typical acid reaction. Notably, Al(iii)-salphen, POM, and a physical mixture of the two components are much less active, suggesting a synergetic effect of Al(iii)-salphen and POM in a porous framework.

10.
ACS Macro Lett ; 6(7): 775-780, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35650861

RESUMO

The synthesis of ladder polymers is still a big challenge in polymer chemistry, and in particular, there are few examples of conformationally flexible well-defined ladder polymers. Here we report an efficient and convenient route to conformationally flexible ladder polymers, which is based on a postpolymerization reaction of a rigid ladder polymer containing Tröger's base in its main chain. The postpolymerization reaction involves sequential N-methylation and hydrolysis for the Tröger's base unit, resulting in a diazacyclooctane skeleton that can exhibit a ring-flipping motion. Molecular dynamics simulations predicted that this motion provides conformational flexibility with the resultant ladder polymer, which was demonstrated by 1H NMR spectroscopy in solution. The presence of the diazacyclooctane units in the flexible ladder polymer allowed further functionalization through reactions involving its secondary amine moiety. The present synthetic method may lead to the development of a new class of ladder polymers that exhibit both conformational and design flexibility.

11.
Dalton Trans ; 45(7): 2805-9, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26804446

RESUMO

A mesoporous ionic crystal is synthesized with a polyoxometalate and a macrocation with polar cyano groups. The compound possesses one-dimensional mesopores with an opening of 3.0 × 2.0 nm. The compound shows high proton conductivity and catalytic activity, which are due to the water molecules in the mesopores.

12.
J Phys Chem Lett ; 6(12): 2243-6, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26266598

RESUMO

The reaction mechanism of the decomposition of ethoxy species to ethene and acidic OH groups on H-ZSM-5 was studied by IR spectroscopy using isotope-labeled ethanol. The concerted mechanism occurring on both the ethoxy (acid) site and the counterpart lattice oxygen was suggested by GC-MS analysis of evolved d2-ethene and IR observation of the recovery of OH s groups on acid sites from the decomposition of CH3CD2O- ethoxy species. The concerted mechanism was further confirmed by the estimation of activation energy for decomposition of CH3CH2O-, CH3CD2O-, and CD3CD2O- ethoxy species, 122 ± 3, 125 ± 3, and 140 ± 5 kJ mol(-1), respectively, where the kinetic isotope effect was observed for the cleavage of the CH or CD bond of the methyl group of the ethoxy species.

13.
ChemSusChem ; 8(15): 2476-80, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26073555

RESUMO

Titanium(IV) incorporated into the framework of molecular sieves can be used as a highly active and sustainable catalyst for the oxidation of industrially important organic molecules. Unfortunately, the current process for the incorporation of titanium(IV) requires a large amount of expensive organic molecules used as organic-structure-directing agents (OSDAs), and this significantly increases the production costs and causes environmental problems owing to the removal of OSDAs by pyrolysis. Herein, an OSDA-free process was developed to incorporate titanium(IV) into BEA-type molecular sieves for the first time. More importantly, the hydrophobic environment and the robust, 3 D, and large pore structure of the titanium(IV)-incorporated molecular sieves fabricated from the OSDA-free process created a catalyst that was extremely active and selective for the epoxidation of bulky cyclooctene in comparison to Ti-incorporated BEA-type molecular sieves synthesized with OSDAs and commercial titanosilicate TS-1.


Assuntos
Silicatos/química , Titânio/química , Catálise , Peróxido de Hidrogênio/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Oxidantes/química , Oxirredução , Difração de Raios X
14.
Phys Chem Chem Phys ; 16(9): 4155-64, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24451998

RESUMO

In addition to the original preparation route of the RTH-type zeolites using 1,2,2,6,6-pentamethylpiperidine (PMP) as an organic structure directing agent (OSDA), we have found that simpler organic amines such as N-methylpiperidine and pyridine can be used as alternative OSDAs in place of PMP. Furthermore, we have established a synthesis method for preparing the RTH-type zeolites without using any OSDAs. In this study, RTH-type aluminosilicates were synthesized with different types of OSDA or without using any OSDAs. The obtained zeolites synthesized with different preparation methods were characterized by using various techniques, especially high-resolution (27)Al MAS NMR and in situ FT-IR techniques using CO adsorption. The relationship between the preparation method and the catalytic performance in the methanol to olefins (MTO) reaction was discussed. Finally, the distribution of Al species in the RTH-framework was clarified.

15.
J Phys Chem Lett ; 5(20): 3528-31, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26278604

RESUMO

IR observation of ethanol adsorption clarified the presence of the apparent intramolecular isotope exchange from CD3CH2OH to CHD2CH2OD on acidic OH groups of H-ZSM-5 zeolite. This reaction did not proceed with CD3OH nor CH3CD2OH, implying that the ß-hydrogen of alcohol had interaction with the lattice oxygen adjacent to Al and that the reaction was mediated by isotope exchange of CD3 groups of ethanol and OH groups on zeolite.

16.
Phys Chem Chem Phys ; 13(32): 14598-605, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21743895

RESUMO

A series of boron- and aluminium-containing MFI zeolites were synthesized and various characterization techniques, such as NMR ((27)Al, (29)Si and (11)B), were employed to study the acidities of zeolites. Moreover, in situ IR was applied to investigate the interaction of methanol and ethene with the acid sites, and those catalytic materials were used for co-reaction of methanol and ethene to produce propene. The production of propene was related to the Al content of the zeolites with Si/Al ratios of higher than 90. It is implied that the presence of boron during the synthesis directed the aluminium to occupy certain tetrahedral sites in the zeolite framework, thus preventing the formation of ethene oligomers, and resulting in increased propene selectivity.

17.
J Am Chem Soc ; 133(12): 4224-7, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21370861

RESUMO

Niobic acid, Nb(2)O(5)·nH(2)O, has been studied as a heterogeneous Lewis acid catalyst. NbO(4) tetrahedra, Lewis acid sites, on Nb(2)O(5)·nH(2)O surface immediately form NbO(4)-H(2)O adducts in the presence of water. However, a part of the adducts can still function as effective Lewis acid sites, catalyzing the allylation of benzaldehyde with tetraallyl tin and the conversion of glucose into 5-(hydroxymethyl)furfural in water.

19.
Phys Chem Chem Phys ; 13(7): 2563-70, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21221444

RESUMO

The confined space synthesis method has been applied to the preparation of sodium tantalate (NaTaO(3)); hydrothermal reaction of NaOH and Ta(2)O(5) was carried out in the pores of a three-dimensional mesoporous carbon, which was replicated by the colloidal array of silica nanospheres (SNSs) 20 nm in size. This approach led to the formation of a colloidal array of NaTaO(3) nanoparticles 20 nm in size with a surface area of 34 m(2) g(-1). The photocatalytic performance of the colloidal array of NaTaO(3) nanoparticles for overall water splitting under UV irradiation (λ > 200 nm) was evaluated after loading a NiO cocatalyst onto NaTaO(3) samples. The NiO-loaded NaTaO(3) nanoparticles showed photocatalytic activity for overall water splitting more than three times as high as non-structured bulk NaTaO(3) particles.

20.
Phys Chem Chem Phys ; 12(37): 11576-86, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20683516

RESUMO

Using IR spectroscopy, three different surface states of HY zeolite were probed by successive adsorption of CO at 143 K followed by evacuation and pyridine adsorption at 523 K: HY zeolite [1] without strong Lewis acid sites (LAS); [2] after high temperature (873 K) evacuation to convert Brønsted acid sites (BAS) to strong LAS; and [3] after water re-adsorption on HY zeolite [2] to recover BAS from LAS. The original surface of HY zeolite [1] seemed to be recovered on HY zeolite [3] after high temperature evacuation and water treatment by CO adsorption, while a part of generated LAS on HY zeolite [2] seemed irreversible on HY zeolite [3] to HY zeolite [1] by pyridine adsorption. To clarify this discrepancy, re-examination of the IR spectra of adsorbed CO and pyridine on γ-alumina and silica-alumina after similar treatments to those on HY zeolite was conducted. Based on the results of CO adsorption on γ-alumina and silica-alumina, the presence of extra-framework aluminium sites on HY zeolite [1] was confirmed. High temperature evacuation of HY zeolite [1] formed very strong LAS, a part of which was irreversible to BAS by water re-adsorption at room temperature. The irreversible sites on HY zeolite [3] were assigned to non-acidic OH groups attributed to silica-alumina. The non-acidic OH groups on HY zeolite [3], which were BAS on HY zeolite [1], hydrogen-bonded to pyridine to show IR spectra similar to those adsorbed on LAS. Thus, LAS on HY zeolite [3] seemed irreversible by pyridine adsorption after water re-adsorption. On the other hand, CO adsorbed on non-acidic OH groups showed a band at only slightly lower frequency (2160 cm(-1)) than that of BAS (2178 cm(-1)), resulting in overlapps and ignoring their presence. Thus, CO adsorption seemed to show that complete recovery of LAS to BAS occurred.


Assuntos
Zeolitas/química , Ácidos/química , Óxido de Alumínio/química , Monóxido de Carbono/química , Piridinas/química , Dióxido de Silício/química , Espectrofotometria Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...