Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zoolog Sci ; 41(2): 167-176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587911

RESUMO

The treehoppers (Hemiptera, Membracidae) are known for possessing a large three-dimensional structure called a helmet. Although some ecological functions of the helmet have already been elucidated, the developmental mechanisms underlying the complex and diverse morphology of the helmet are still largely unknown. The process of helmet formation was first described in Antianthe expansa, which possesses a simple roof-shaped helmet. However, the developmental process in species with more complex helmet morphologies remains largely unexplored. Hence, in this study, we used Poppea capricornis, which possesses a more complex helmet structure than A. expansa, to investigate the helmet development using paraffin sections, micro-CT, and scanning electronic microscopy. Our focus was on the overall helmet developmental process common to both species and formation of structures unique to Poppea and its comparison to Antianthe. As a result, we discovered that miniature structures were also formed in Poppea, similar to Antianthe, during the helmet formation. Common structures that were shared between the two species were discernible at this stage. Additionally, we observed that suprahumeral horns and posterior horns, two morphological traits specific to the Poppea helmet that are apparently similar anatomically, are formed through two distinctly different developmental mechanisms. The suprahumeral horns appeared to be formed by utilizing the nymphal suprahumeral bud as a mold, while we could not detect any nymphal structures potentially used for a mold in the posterior horns formation. Our findings suggest that the helmet formation mechanisms of Antianthe and Poppea employ a common mechanism but form species-specific structures by multiple mechanisms.


Assuntos
Hemípteros , Animais , Dispositivos de Proteção da Cabeça , Especificidade da Espécie
2.
Bone Rep ; 20: 101748, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38525199

RESUMO

Type I collagen plays a pivotal role in shaping bone morphology and determining its physical properties by serving as a template for ossification. Nevertheless, the mechanisms underlying bone collagen formation, particularly the principles governing its orientation, remain unknown owing to the lack of a method that enables continuous in vivo observations. To address this challenge, we constructed a method to visualize bone collagen by tagging with green fluorescent protein (GFP) in zebrafish and observed the interactions between osteoblasts and collagen fibers during bone formation in vivo. When collagen type I alpha 2 chain (Col1a2)-GFP was expressed under the control of the osteoblast-specific promoters osx or osc in zebrafish, bone collagen was observed clearly enough to identify its localization, whereas collagen from other organs was not. Therefore, we determined that this method was of sufficient quality for the detailed in vivo observation of bone collagen. Next, bone collagen in the scales, fin rays, and opercular bones of zebrafish was observed in detail, when bone formation is more active. High-magnification imaging showed that Col1a2-GFP can visualize collagen sufficiently to analyze the collagen fiber orientation and microstructure of bones. Furthermore, by simultaneously observation of bone collagen and osteoblasts, we successfully observed dynamic changes in the morphology and position of osteoblasts from the early stages of bone formation. It was also found that the localization pattern and orientation of bone collagen significantly differed depending on the choice of the expression promoter. Both promoters (osx and osc) used in this study are osteoblast-specific, but their Col1a2-GFP localizing regions within the bone were exclusive, with osx region localizing mainly to the outer edge of the bone and osc region localizing to the central area of the bone. This suggests the existence of distinct osteoblast subpopulations with different gene expression profiles, each of which may play a unique role in osteogenesis. These findings would contribute to a better understanding of the mechanisms governing bone collagen formation by osteoblasts.

3.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38477641

RESUMO

Clarifying the mechanisms underlying shape alterations during insect metamorphosis is important for understanding exoskeletal morphogenesis. The large horn of the Japanese rhinoceros beetle Trypoxylus dichotomus is the result of drastic metamorphosis, wherein it appears as a rounded shape during pupation and then undergoes remodeling into an angular adult shape. However, the mechanical mechanisms underlying this remodeling process remain unknown. In this study, we investigated the remodeling mechanisms of the Japanese rhinoceros beetle horn by developing a physical simulation. We identified three factors contributing to remodeling by biological experiments - ventral adhesion, uneven shrinkage, and volume reduction - which were demonstrated to be crucial for transformation using a physical simulation. Furthermore, we corroborated our findings by applying the simulation to the mandibular remodeling of stag beetles. These results indicated that physical simulation applies to pupal remodeling in other beetles, and the morphogenic mechanism could explain various exoskeletal shapes.


Assuntos
Besouros , Animais , Japão , Simulação por Computador , Mandíbula , Pupa
4.
J Morphol ; 285(2): e21666, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361265

RESUMO

Vertebral growth is an essential developmental process to support the expansion of the vertebrate body. In teleosts, the lateral side of the vertebral bodies develops to form different structures among species in the late stages of vertebral growth, although lateral structures are not apparent in the early stages. Lateral structures are one of the structural features that determine the diversity of teleost vertebrae. However, explanations for the formation of lateral structures are conflicting because few reports have investigated the growth of teleost vertebral bodies. To clarify the growth process, we analyzed the morphological changes in the vertebral body of Pacific bluefin tuna Thunnus orientalis at different developmental stages using micro-computed tomography (CT) scans. The micro-CT scans showed that the vertebral centrum formed a plate-like ridge on the lateral side along the cranial-caudal direction and extended laterally with increasing thickness. Simultaneously, the proximal region of the lateral ridges became porous as the vertebrae grew to form bone marrow cavities. Furthermore, we used histological observations to describe the relationship between these morphological changes and osteoblast and osteoclast activities. Osteoblasts accumulated on the distal edges of the lateral ridges, whereas osteoclasts were distributed in the bone marrow cavities. These observations suggest that bone resorption occurs proximally to form bone marrow cavities in addition to bone synthesis at the edges of the lateral ridges. The bone marrow cavities were occupied by blood vessels, extracellular matrix, and adipocytes, and the internal tissue composition changed to increase the area of adipose tissue. Because the ratio of bone volume decreases in large vertebrae, bone formation and resorption are regulated to separate the external cortical and internal trabecular bones to support the vertebrae. This study is the first to report the formation of lateral structures and can be applied to similar lateral structures in the vertebrae of other teleost species.


Assuntos
Atum , Corpo Vertebral , Animais , Microtomografia por Raio-X , Coluna Vertebral/diagnóstico por imagem , Osso e Ossos
5.
Front Genet ; 14: 1321379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259612

RESUMO

Scoliosis is a condition where the spine curves sideways, unique to humans due to their upright posture. However, the cause of this disease is not well understood because it is challenging to find a model for experimentation. This study aimed to create a model for human idiopathic scoliosis by manipulating the function of mechanosensitive channels called Piezo channels in zebrafish. Zebrafish were chosen because they experience similar biomechanical forces to humans, particularly in relation to the role of mechanical force in scoliosis progression. Here we describe piezo1 and piezo2a are involved in bone formation, with a double knockout resulting in congenital systemic malformations. However, an in-frame mutation of piezo1 led to fully penetrant juvenile-onset scoliosis, bone asymmetry, reduced tissue mineral density, and abnormal intervertebral discs-resembling non-congenital scoliosis symptoms in humans. These findings suggest that functional Piezo channels responding to mechanical forces are crucial for bone formation and maintaining spine integrity, providing insights into skeletal disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA