Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629167

RESUMO

Clear cell renal cell carcinoma (ccRCC) accounts for 80-90% of kidney cancers worldwide. Small C-terminal domain phosphatases CTDSP1, CTDSP2, and CTDSPL (also known as SCP1, 2, 3) are involved in the regulation of several important pathways associated with carcinogenesis. In various cancer types, these phosphatases may demonstrate either antitumor or oncogenic activity. Tumor-suppressive activity of these phosphatases in kidney cancer has been shown previously, but in general case, the antitumor activity may be dependent on the choice of cell line. In the present work, transfection of the Caki-1 cell line (ccRCC morphologic phenotype) with expression constructs containing the coding regions of these genes resulted in inhibition of cell growth in vitro in the case of CTDSP1 (p < 0.001) and CTDSPL (p < 0.05) but not CTDSP2. The analysis of The Cancer Genome Atlas (TCGA) data showed differential expression of some of CTDSP genes and of their target, RB1. These results were confirmed by quantitative RT-PCR using an independent sample of primary ccRCC tumors (n = 52). We observed CTDSPL downregulation and found a positive correlation of expression for two gene pairs: CTDSP1 and CTDSP2 (rs = 0.76; p < 0.001) and CTDSPL and RB1 (rs = 0.38; p < 0.05). Survival analysis based on TCGA data demonstrated a strong association of lower expression of CTDSP1, CTDSP2, CTDSPL, and RB1 with poor survival of ccRCC patients (p < 0.001). In addition, according to TCGA, CTDSP1, CTDSP2, and RB1 were differently expressed in two subtypes of ccRCC-ccA and ccB, characterized by different survival rates. These results confirm that CTDSP1 and CTDSPL have tumor suppressor properties in ccRCC and reflect their association with the more aggressive ccRCC phenotype.


Assuntos
Antígenos de Grupos Sanguíneos , Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Monoéster Fosfórico Hidrolases , Genes Supressores de Tumor , Neoplasias Renais/genética
2.
Biosci Rep ; 39(12)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31774910

RESUMO

Non-Small Cell Lung Cancer (NSCLC) is responsible for the majority of deaths caused by cancer. Small C-terminal domain (CTD) phosphatases (SCP), CTDSP1, CTDSP2 and CTDSPL (CTDSPs) belong to SCP/CTDSP subfamily and are involved in many vital cellular processes and tumorigenesis. High similarity of their structures suggests similar functions. However their role in NSCLC remains insufficiently understood. For the first time we revealed the suppressor function of CTDSPs leading to a significant growth slowdown and senescence of A549 lung adenocarcinoma (ADC) cells in vitro. Their tumor-suppressive activity can be realized through increasing the proportion of the active form of Rb protein dephosphorylated at Ser807/811, Ser780, and Ser795 (P<0.05) thereby negatively regulating cancer cell proliferation. Moreover, we observed that a frequent (84%, 39/46) and highly concordant (Spearman's rank correlation coefficient (rs) = 0.53-0.62, P≤0.01) down-regulation of CTDSPs and RB1 is characteristic of primary NSCLC samples (n=46). A clear difference in their mRNA levels was found between lung ADCs with and without lymph node metastases, but not in squamous cell carcinomas (SCCs) (P≤0.05). Based on The Cancer Genome Atlas (TCGA) data and the results obtained using the CrossHub tool, we suggest that the well-known oncogenic cluster miR-96/182/183 could be a common expression regulator of CTDSPs. Indeed, according to our qPCR, the expression of CTDSPs negatively correlates with these miRs, but positively correlates with their intronic miR-26a/b. Our results reflect functional association of CTDSP1, CTDSP2, and CTDSPL, expand knowledge about their suppressor properties through Rb dephosphorylation and provide new insights into the regulation of NSCLC growth.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Fosfoproteínas Fosfatases/genética , Proteínas Supressoras de Tumor/genética
3.
Case Rep Hematol ; 2017: 1262368, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29410924

RESUMO

Richter's syndrome is the development of high-grade non-Hodgkin lymphoma (NHL) or Hodgkin lymphoma in patients with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). In most patients with Richter's syndrome, the high-grade NHL is diffuse large B-cell lymphoma. Only a small minority of CLL/SLL patients develop T-cell malignancies. Herein, we describe a 40-year-old male patient presenting with peripheral T-cell lymphoma not otherwise specified (PTCL-NOS) in the submandibular salivary gland, two years after the diagnosis of CLL/SLL. The PTCL-NOS consisted of small lymphocytes, which complicated diagnosis. Immunohistochemical, cytological, and molecular studies allowed the correct diagnosis of composite lymphoma (SLL/PTCL-NOS) of the submandibular salivary gland. The PTCL-NOS had a cytotoxic phenotype and aberrant expression of CD79a. There was no evidence to suggest that the PTCL-NOS of the submandibular salivary gland developed from an intimately associated submandibular lymph node or by PTCL-NOS dissemination. A review of the literature and presented case suppose that the PTCLs developed following CLL/SLL have the cytotoxic phenotype and can clinically mimic typical Richter's syndrome.

4.
PLoS One ; 10(5): e0123369, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961819

RESUMO

The SEMA3B gene is located in the 3p21.3 LUCA region, which is frequently affected in different types of cancer. The objective of our study was to expand our knowledge of the SEMA3B gene as a tumor suppressor and the mechanisms of its inactivation. In this study, several experimental approaches were used: tumor growth analyses and apoptosis assays in vitro and in SCID mice, expression and methylation assays and other. With the use of the small cell lung cancer cell line U2020 we confirmed the function of SEMA3B as a tumor suppressor, and showed that the suppression can be realized through the induction of apoptosis and, possibly, associated with the inhibition of angiogenesis. In addition, for the first time, high methylation frequencies have been observed in both intronic (32-39%) and promoter (44-52%) CpG-islands in 38 non-small cell lung carcinomas, including 16 squamous cell carcinomas (SCC) and 22 adenocarcinomas (ADC), and in 83 clear cell renal cell carcinomas (ccRCC). Correlations between the methylation frequencies of the promoter and the intronic CpG-islands of SEMA3B with tumor stage and grade have been revealed for SCC, ADC and ccRCC. The association between the decrease of the SEMA3B mRNA level and hypermethylation of the promoter and the intronic CpG-islands has been estimated in renal primary tumors (P < 0.01). Using qPCR, we observed on the average 10- and 14-fold decrease of the SEMA3B mRNA level in SCC and ADC, respectively, and a 4-fold decrease in ccRCC. The frequency of this effect was high in both lung (92-95%) and renal (84%) tumor samples. Moreover, we showed a clear difference (P < 0.05) of the SEMA3B relative mRNA levels in ADC with and without lymph node metastases. We conclude that aberrant expression and methylation of SEMA3B could be suggested as markers of lung and renal cancer progression.


Assuntos
Carcinoma de Células Renais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Neoplasias Pulmonares/genética , Glicoproteínas de Membrana/genética , Neoplasias de Células Escamosas/genética , Semaforinas/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA , Humanos , Rim/metabolismo , Rim/patologia , Neoplasias Renais/patologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos SCID , Neoplasias de Células Escamosas/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Regiões Promotoras Genéticas , Carcinoma de Pequenas Células do Pulmão/patologia
5.
Biomed Res Int ; 2014: 735292, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24977159

RESUMO

This study aimed to clarify epigenetic and genetic alterations that occur during renal carcinogenesis. The original method includes chromosome 3 specific NotI-microarrays containing 180 NotI-clones associated with 188 genes for hybridization with 23 paired normal/tumor DNA samples of primary clear cell renal cell carcinomas (ccRCC). Twenty-two genes showed methylation and/or deletion in 17-57% of tumors. These genes include tumor suppressors or candidates (VHL, CTDSPL, LRRC3B, ALDH1L1, and EPHB1) and genes that were not previously considered as cancer-associated (e.g., LRRN1, GORASP1, FGD5, and PLCL2). Bisulfite sequencing analysis confirmed methylation as a frequent event in ccRCC. A set of six markers (NKIRAS1/RPL15, LRRN1, LRRC3B, CTDSPL, GORASP1/TTC21A, and VHL) was suggested for ccRCC detection in renal biopsies. The mRNA level decrease was shown for 6 NotI-associated genes in ccRCC using quantitative PCR: LRRN1, GORASP1, FOXP1, FGD5, PLCL2, and ALDH1L1. The majority of examined genes showed distinct expression profiles in ccRCC and papillary RCC. The strongest extent and frequency of downregulation were shown for ALDH1L1 gene both in ccRCC and papillary RCC. Moreover, the extent of ALDH1L1 mRNA level decrease was more pronounced in both histological types of RCC stage III compared with stages I and II (P = 0.03). The same was observed for FGD5 gene in ccRCC (P < 0.06). Dedicated to thememory of Eugene R. Zabarovsky.


Assuntos
Carcinoma de Células Renais/genética , Cromossomos Humanos Par 3/genética , Epigênese Genética/genética , Neoplasias Renais/genética , Proteínas de Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Deleção Cromossômica , Marcadores Genéticos/genética , Variação Genética/genética , Humanos
6.
Epigenetics ; 7(5): 502-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22491060

RESUMO

This study aimed to clarify genetic and epigenetic alterations that occur during lung carcinogenesis and to design perspective sets of newly identified biomarkers. The original method includes chromosome 3 specific NotI-microarrays containing 180 NotI clones associated with genes for hybridization with 40 paired normal/tumor DNA samples of primary lung tumors: 28 squamous cell carcinomas (SCC) and 12 adenocarcinomas (ADC). The NotI-microarray data were confirmed by qPCR and bisulfite sequencing analyses. Forty-four genes showed methylation and/or deletions in more than 15% of non-small cell lung cancer (NSCLC) samples. In general, SCC samples were more frequently methylated/deleted than ADC. Moreover, the SCC alterations were observed already at stage I of tumor development, whereas in ADC many genes showed tumor progression specific methylation/deletions. Among genes frequently methylated/deleted in NSCLC, only a few were already known tumor suppressor genes: RBSP3 (CTDSPL), VHL and THRB. The RPL32, LOC285205, FGD5 and other genes were previously not shown to be involved in lung carcinogenesis. Ten methylated genes, i.e., IQSEC1, RBSP3, ITGA 9, FOXP1, LRRN1, GNAI2, VHL, FGD5, ALDH1L1 and BCL6 were tested for expression by qPCR and were found downregulated in the majority of cases. Three genes (RBSP3, FBLN2 and ITGA9) demonstrated strong cell growth inhibition activity. A comprehensive statistical analysis suggested the set of 19 gene markers, ANKRD28, BHLHE40, CGGBP1, RBSP3, EPHB1, FGD5, FOXP1, GORASP1/TTC21, IQSEC1, ITGA9, LOC285375, LRRC3B, LRRN1, MITF, NKIRAS1/RPL15, TRH, UBE2E2, VHL, WNT7A, to allow early detection, tumor progression, metastases and to discriminate between SCC and ADC with sensitivity and specificity of 80-100%.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Testes Genéticos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 3/metabolismo , Metilação de DNA , Progressão da Doença , Feminino , Deleção de Genes , Genes Neoplásicos , Fatores de Troca do Nucleotídeo Guanina , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Transfecção , Proteínas Supressoras de Tumor , Proteína Supressora de Tumor Von Hippel-Lindau
7.
PLoS One ; 6(3): e15612, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21408220

RESUMO

BACKGROUND: CHL1 gene (also known as CALL) on 3p26.3 encodes a one-pass trans-membrane cell adhesion molecule (CAM). Previously CAMs of this type, including L1, were shown to be involved in cancer growth and metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We used Clontech Cancer Profiling Arrays (19 different types of cancers, 395 samples) to analyze expression of the CHL1 gene. The results were further validated by RT-qPCR for breast, renal and lung cancer. Cancer Profiling Arrays revealed differential expression of the gene: down-regulation/silencing in a majority of primary tumors and up-regulation associated with invasive/metastatic growth. Frequent down-regulation (>40% of cases) was detected in 11 types of cancer (breast, kidney, rectum, colon, thyroid, stomach, skin, small intestine, bladder, vulva and pancreatic cancer) and frequent up-regulation (>40% of cases)--in 5 types (lung, ovary, uterus, liver and trachea) of cancer. Using real-time quantitative PCR (RT-qPCR) we found that CHL1 expression was decreased in 61% of breast, 60% of lung, 87% of clear cell and 89% papillary renal cancer specimens (P<0.03 for all the cases). There was a higher frequency of CHL1 mRNA decrease in lung squamous cell carcinoma compared to adenocarcinoma (81% vs. 38%, P = 0.02) without association with tumor progression. CONCLUSIONS/SIGNIFICANCE: Our results suggested that CHL1 is involved in the development of different human cancers. Initially, during the primary tumor growth CHL1 could act as a putative tumor suppressor and is silenced to facilitate in situ tumor growth for 11 cancer types. We also suggested that re-expression of the gene on the edge of tumor mass might promote local invasive growth and enable further metastatic spread in ovary, colon and breast cancer. Our data also supported the role of CHL1 as a potentially novel specific biomarker in the early pathogenesis of two major histological types of renal cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Neoplasias/genética , Lesões Pré-Cancerosas/genética , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
BMC Cancer ; 10: 75, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20193080

RESUMO

BACKGROUND: The short arm of human chromosome 3 is involved in the development of many cancers including lung cancer. Three bona fide lung cancer tumor suppressor genes namely RBSP3 (AP20 region),NPRL2 and RASSF1A (LUCA region) were identified in the 3p21.3 region. We have shown previously that homozygous deletions in AP20 and LUCA sub-regions often occurred in the same tumor (P < 10-6). METHODS: We estimated the quantity of RBSP3, NPRL2, RASSF1A, GAPDH, RPN1 mRNA and RBSP3 DNA copy number in 59 primary non-small cell lung cancers, including 41 squamous cell and 18 adenocarcinomas by real-time reverse transcription-polymerase chain reaction based on TaqMan technology and relative quantification. RESULTS: We evaluated the relationship between mRNA level and clinicopathologic characteristics in non-small cell lung cancer. A significant expression decrease (> or =2) was found for all three genes early in tumor development: in 85% of cases for RBSP3; 73% for NPRL2 and 67% for RASSF1A (P < 0.001), more strongly pronounced in squamous cell than in adenocarcinomas. Strong suppression of both, NPRL2 and RBSP3 was seen in 100% of cases already at Stage I of squamous cell carcinomas. Deregulation of RASSF1A correlated with tumor progression of squamous cell (P = 0.196) and adenocarcinomas (P < 0.05). Most likely, genetic and epigenetic mechanisms might be responsible for transcriptional inactivation of RBSP3 in non-small cell lung cancers as promoter methylation of RBSP3 according to NotI microarrays data was detected in 80% of squamous cell and in 38% of adenocarcinomas. With NotI microarrays we tested how often LUCA (NPRL2, RASSF1A) and AP20 (RBSP3) regions were deleted or methylated in the same tumor sample and found that this occured in 39% of all studied samples (P < 0.05). CONCLUSION: Our data support the hypothesis that these TSG are involved in tumorigenesis of NSCLC. Both genetic and epigenetic mechanisms contribute to down-regulation of these three genes representing two tumor suppressor clusters in 3p21.3. Most importantly expression of RBSP3, NPRL2 and RASSF1A was simultaneously decreased in the same sample of primary NSCLC: in 39% of cases all these three genes showed reduced expression (P < 0.05).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias Pulmonares/metabolismo , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...