Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930342

RESUMO

Alumina (Al2O3) ceramics are widely used in electronics, machinery, healthcare, and other fields due to their excellent hardness and high temperature stability. However, their high brittleness limits further applications, such as artificial ceramic implants and highly flexible protective gear. To address the limitations of single-phase toughening in Al2O3 ceramics, some researchers have introduced a second phase to enhance these ceramics. However, introducing a single phase still limits the range of performance improvement. Therefore, this study explores the printing of Al2O3 ceramics by adding two different phases. Additionally, a new gradient printing technique is proposed to overcome the limitations of single material homogeneity, such as uniform performance and the presence of large residual stresses. Unlike traditional vat photopolymerization printing technology, this study stands out by generating green bodies with varying second-phase particle ratios across different layers. This study investigated the effects of different contents of sepiolite fiber (SF) and 316L stainless steel (SS) on various aspects of microstructure, phase composition, physical properties, and mechanical properties of gradient-printed Al2O3. The experimental results demonstrate that compared to Al2O3 parts without added SF and 316L SS, the inclusion of these materials can significantly reduce porosity and water absorption, resulting in a denser structure. In addition, the substantial improvements, with an increase of 394.4% in flexural strength and an increase of 316.7% in toughness, of the Al2O3 components enhanced by incorporating SF and 316L SS have been obtained.

2.
J Biol Chem ; 299(4): 104573, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870685

RESUMO

Sideromycins are a unique subset of siderophores comprising of a siderophore conjugated to an antimicrobial agent. The "Trojan horse" antibiotic albomycins are unique sideromycins consisting of a ferrichrome-type siderophore conjugated to a peptidyl nucleoside antibiotic. They exhibit potent antibacterial activities against many model bacteria and a number of clinical pathogens. Earlier studies have provided significant insight into the biosynthetic pathway of the peptidyl nucleoside moiety. We herein decipher the biosynthetic pathway of the ferrichrome-type siderophore in Streptomyces sp. ATCC 700974. Our genetic studies suggested that abmA, abmB, and abmQ are involved in the formation of the ferrichrome-type siderophore. Additionally, we performed biochemical studies to demonstrate that a flavin-dependent monooxygenase AbmB and an N-acyltransferase AbmA catalyze sequential modifications of L-ornithine to generate N5-acetyl-N5-hydroxyornithine. Three molecules of N5-acetyl-N5-hydroxyornithine are then assembled to generate the tripeptide ferrichrome through the action of a nonribosomal peptide synthetase AbmQ. Of special note, we found out that orf05026 and orf03299, two genes scattered elsewhere in the chromosome of Streptomyces sp. ATCC 700974, have functional redundancy for abmA and abmB, respectively. Interestingly, both orf05026 and orf03299 are situated within gene clusters encoding putative siderophores. In summary, this study provided new insight into the siderophore moiety of albomycin biosynthesis and shed light on the contingency of multiple siderophores in albomycin-producing Streptomyces sp. ATCC 700974.


Assuntos
Sideróforos , Streptomyces , Sideróforos/metabolismo , Ferricromo/química , Ferricromo/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Vias Biossintéticas , Nucleosídeos/metabolismo , Antibacterianos/metabolismo
3.
ACS Chem Biol ; 17(12): 3499-3506, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36409520

RESUMO

ß-Carboline (ßC) alkaloids constitute a large family of indole alkaloids that exhibit diverse pharmacological properties, such as antitumor, antiviral, antiparasitic, and antimicrobial activities. Here, we report that a flavoprotein StnP2 catalyzes the dehydrogenation at C1-N2 of a tetrahydro-ß-carboline (THßC) generating a 3,4-dihydro-ß-carboline (DHßC), and the DHßC subsequently undergoes a spontaneous dehydrogenation to ßC formation involved in the biosynthesis of the antitumor agent streptonigrin. Biochemical characterization showed that StnP2 catalyzed the highly regio- and stereo-selective dehydrogenation, and StnP2 exhibits promiscuity toward different THßCs. This study provides an alternative kind of enzyme catalyzing the biosynthesis of ßC alkaloids and enhances the importance of flavoproteins.


Assuntos
Alcaloides , Estreptonigrina , Flavoproteínas , Carbolinas , Alcaloides/química , Alcaloides Indólicos
4.
Antibiotics (Basel) ; 11(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35453190

RESUMO

The widespread emergence of antibiotic-resistant bacteria highlights the urgent need for new antimicrobial agents. Albomycins are a group of naturally occurring sideromycins with a thionucleoside antibiotic conjugated to a ferrichrome-type siderophore. The siderophore moiety serves as a vehicle to deliver albomycins into bacterial cells via a "Trojan horse" strategy. Albomycins function as specific inhibitors of seryl-tRNA synthetases and exhibit potent antimicrobial activities against both Gram-negative and Gram-positive bacteria, including many clinical pathogens. These distinctive features make albomycins promising drug candidates for the treatment of various bacterial infections, especially those caused by multidrug-resistant pathogens. We herein summarize findings on the discovery and structure elucidation, mechanism of action, biosynthesis and immunity, and chemical synthesis of albomcyins, with special focus on recent advances in the biosynthesis and chemical synthesis over the past decade (2012-2022). A thorough understanding of the biosynthetic pathway provides the basis for pathway engineering and combinatorial biosynthesis to create new albomycin analogues. Chemical synthesis of natural congeners and their synthetic analogues will be useful for systematic structure-activity relationship (SAR) studies, and thereby assist the design of novel albomycin-derived antimicrobial agents.

5.
Metab Eng ; 68: 187-198, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34673237

RESUMO

Herbicide-resistance in weeds has become a serious threat to agriculture across the world. Thus, there is an urgent need for the discovery and development of herbicides with new modes of action. Thaxtomin phytotoxins are a group of nitrated diketopiperazines produced by potato common scab-causing phytopathogen Streptomyces scabies and other actinobacterial pathogens. They are generally considered to function as inhibitors of cellulose synthesis in plants, and thus have great potential to be used as natural herbicides. Generation of an overproducing strain is crucial for the scale-up production of thaxtomins and their wide use in agriculture. In the present study, we employed a stepwise strategy by combining heterologous expression, repressor deletion, activator overexpression, and optimization of fermentation media for high-level production of thaxtomins. The maximum yield of 728 mg/L thaxtomins was achieved with engineered Streptomyces albidoflavus J1074 strains in shake-flask cultures, and it was approximately 36-fold higher than S. albidoflavus J1074 carrying the unmodified cluster. Moreover, the yield of thaxtomins could reach 1973 mg/L when the engineered strain was cultivated in a small-scale stirred-tank bioreactor. This is the highest titer reported to date, representing a significant leap forward for the scale-up production of thaxtomins. Our study presents a robust, easy-to-use system that will be broadly useful for improving titers of bioactive compounds in many Streptomyces species.


Assuntos
Engenharia Metabólica , Streptomyces , Indóis , Piperazinas , Streptomyces/genética
6.
Crit Rev Biotechnol ; 40(8): 1163-1171, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32819175

RESUMO

Herbicide-resistant weeds are a growing problem worldwide. Thaxtomin phytotoxins are a group of nitrated diketopiperazines produced by the potato common scab-causing pathogen Streptomyces scabies and other actinobacterial plant pathogens. They represent a unique class of microbial natural products with distinctive structural features and promising herbicidal activity. The biosynthesis of thaxtomins proceeds through multiple steps of unusual enzymatic reactions. Advances in understanding of thaxtomins biosynthetic machinery have provided the basis for precursor-directed biosynthesis, pathway refactoring, and one-pot biocombinatorial synthesis to generate thaxtomin analogues. We herein summarize recent findings on the biosynthesis of thaxtomins and highlight recent advances in the rational generation of novel thaxtomins for the development of potent herbicidal agents.


Assuntos
Vias Biossintéticas , Herbicidas/metabolismo , Engenharia Metabólica , Plantas Daninhas , Solanum tuberosum/microbiologia , Streptomyces
7.
Front Microbiol ; 10: 2927, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921086

RESUMO

The genus Streptomyces is a unique subgroup of actinomycetes bacteria that are well-known as prolific producers of antibiotics and many other bioactive secondary metabolites. Various environmental and physiological signals affect the onset and level of production of each antibiotic. Here we highlight recent findings on the regulation of antibiotic biosynthesis in Streptomyces by signaling molecules, with special focus on autoregulators such as hormone-like signaling molecules and antibiotics themselves. Hormone-like signaling molecules are a group of small diffusible signaling molecules that interact with specific receptor proteins to initiate complex regulatory cascades of antibiotic biosynthesis. Antibiotics and their biosynthetic intermediates can also serve as autoregulators to fine-tune their own biosynthesis or cross-regulators of disparate biosynthetic pathways. Advances in understanding of signaling molecules-mediated regulation of antibiotic production in Streptomyces may aid the discovery of new signaling molecules and their use in eliciting silent antibiotic biosynthetic pathways in a wide range of actinomycetes.

8.
Org Biomol Chem ; 16(47): 9124-9128, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30483694

RESUMO

Streptonigrin (STN, 1) is a highly functionalized aminoquinone alkaloid antibiotic with broad and potent antitumor activity. Previous isotope-labelling and genetic studies suggested that a ß-carboline alkaloid should be a key intermediate of STN biosynthesis and formed via a Pictet-Spengler (PS) reaction. Herein, StnK2 was biochemically characterized to be a Pictet-Spenglerase (PSase) catalysing the formation of a tetrahydro-ß-carboline (TH-ßC) scaffold from (2S,3S)-ß-methyl tryptophan and d-erythrose-4-phosphate. StnK2 can tolerate the alteration of tryptophan but only accept d-erythrose-4-phosphate as the aldehyde substrate, and StnK2 was identified to be R-specific for the newly formed chiral center. This work increases the diversities of Pictet-Spenglerase in nature and set a stage for the generation of streptonigrin derivatives by precursor-directed pathway engineering based on the flexible substrate selectivity of StnK2.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Vias Biossintéticas , Streptomyces/enzimologia , Estreptonigrina/metabolismo , Carbolinas/metabolismo , Estereoisomerismo , Streptomyces/metabolismo , Especificidade por Substrato , Triptofano/análogos & derivados , Triptofano/metabolismo
9.
Sci Rep ; 6: 20273, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847951

RESUMO

Streptonigrin is a potent antitumor antibiotic, active against a wide range of mammalian tumor cells. It was reported that its biosynthesis relies on (2S,3R)-ß-methyltryptophan as an intermediate. In this study, the biosynthesis of (2S,3R)-ß-methyltryptophan and its isomer (2S,3S)-ß-methyltryptophan by enzymes from the streptonigrin biosynthetic pathway is demonstrated. StnR is a pyridoxal 5'-phosphate (PLP)-dependent aminotransferase that catalyzes a transamination between L-tryptophan and ß-methyl indolepyruvate. StnQ1 is an S-adenosylmethionine (SAM)-dependent C-methyltransferase and catalyzes ß-methylation of indolepyruvate to generate (R)-ß-methyl indolepyruvate. Although StnR exhibited a significant preference for (S)-ß-methyl indolepyruvate over the (R)-epimer, StnQ1 and StnR together catalyze (2S,3R)-ß-methyltryptophan formation from L-tryptophan. StnK3 is a cupin superfamily protein responsible for conversion of (R)-ß-methyl indolepyruvate to its (S)-epimer and enables (2S,3S)-ß-methyltryptophan biosynthesis from L-tryptophan when combined with StnQ1 and StnR. Most importantly, (2S,3S)-ß-methyltryptophan was established as the biosynthetic intermediate of the streptonigrin pathway by feeding experiments with a knockout mutant, contradicting the previous proposal that stated (2S,3R)-ß-methyltryptophan as the intermediate. These data set the stage for the complete elucidation of the streptonigrin biosynthetic pathway, which would unlock the potential of creating new streptonigrin analogues by genetic manipulation of the biosynthetic machinery.


Assuntos
Antineoplásicos/química , Antineoplásicos/metabolismo , Estreptonigrina/metabolismo , Triptofano/análogos & derivados , Antineoplásicos/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Escherichia coli/metabolismo , Espectrometria de Massas , Metiltransferases/genética , Metiltransferases/metabolismo , Plasmídeos/metabolismo , S-Adenosilmetionina/análise , S-Adenosilmetionina/metabolismo , Estereoisomerismo , Streptomyces/metabolismo , Estreptonigrina/análise , Estreptonigrina/química , Triptofano/análise , Triptofano/química , Triptofano/metabolismo
10.
Angew Chem Int Ed Engl ; 52(49): 12951-5, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24166888

RESUMO

Make the switch: The three-enzyme cassette MarG/H/I is responsible for stereospecific biosynthesis of ß-methyltryptophan from L-tryptophan (1). MarG/I convert 1 into (2S,3R)-ß-methyltryptophan, while MarG/I combined with MarH convert 1 into (2S,3S)-ß-methyltryptophan. MarH serves as a stereochemical switch by catalyzing the stereoinversion of the ß-stereocenter.


Assuntos
Triptofano/análogos & derivados , Triptofano/química , Triptofano/metabolismo , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Estereoisomerismo , Triptofano/biossíntese
11.
PLoS One ; 8(6): e68356, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826389

RESUMO

BACKGROUND: Importin-α1 belongs to a subfamily of nuclear transport adaptors and participates in diverse cellular functions. Best understood for its role in protein transport, importin-α1 also contributes to other biological processes. For instance, arsenite treatment causes importin-α1 to associate with cytoplasmic stress granules (SGs) in mammalian cells. These stress-induced compartments contain translationally arrested mRNAs, small ribosomal subunits and numerous proteins involved in mRNA transport and metabolism. At present, it is not known whether members of all three importin-α subfamilies locate to SGs in response to stress. RESULTS: Here, we demonstrate that the oxidant diethyl maleate (DEM), arsenite and heat shock, promote the formation of cytoplasmic SGs that contain nuclear transport factors. Specifically, importin-α1, α4 and α5, which belong to distinct subfamilies, and importin-ß1 were targeted by all of these stressors to cytoplasmic SGs, but not to P-bodies. Importin-α family members have been implicated in transcriptional regulation, which prompted us to analyze their ability to interact with poly(A)-RNA in growing cells. Our studies show that importin-α1, but not α4, α5, importin-ß1 or CAS, associated with poly(A)-RNA under nonstress conditions. Notably, this interaction was significantly reduced when cells were treated with DEM. Additional studies suggest that importin-α1 is likely connected to poly(A)-RNA through an indirect interaction, as the adaptor did not bind homopolymer RNA specifically in vitro. SIGNIFICANCE: Our studies establish that members of three importin-α subfamilies are bona fide SG components under different stress conditions. Furthermore, importin-α1 is unique in its ability to interact with poly(A)-RNA in a stress-dependent fashion, and in vitro experiments indicate that this association is indirect. Collectively, our data emphasize that nuclear transport factors participate in a growing number of cellular activities that are modulated by stress.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Resposta ao Choque Térmico/fisiologia , Estresse Oxidativo/fisiologia , Arsenitos/metabolismo , Western Blotting , Citoplasma/metabolismo , Imunofluorescência , Células HeLa , Humanos , Maleatos/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
12.
Chembiochem ; 14(6): 679-83, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23505159

RESUMO

NEW ASSEMBLY LINE, NEW COMPOUND: SIA7248, a new symmetric macrolide, was isolated from a marine-derived Streptomyces strain. Bioinformatic analyses of the identified biosynthetic gene cluster (sia) for SIA7248 suggested a polyketide biosynthesis utilizing an iteratively trans-acting ketoreductase (KR). We characterized SiaM as a trans-KR to catalyse reductions of various ß-ketoacyl-thioesters with D-stereospecificity.


Assuntos
Oxirredutases/metabolismo , Policetídeos/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Família Multigênica , Oxirredutases/genética , Policetídeos/química , Policetídeos/isolamento & purificação , Streptomyces/química , Streptomyces/metabolismo
13.
J Ind Microbiol Biotechnol ; 40(6): 529-43, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23515854

RESUMO

Polyene macrolides are a large family of natural products typically produced by soil actinomycetes. Polyene macrolides are usually biosynthesized by modular and large type I polyketide synthases (PKSs), followed by several steps of sequential post-PKS modifications such as region-specific oxidations and glycosylations. Although known as powerful antibiotics containing potent antifungal activities (along with additional activities against parasites, enveloped viruses and prion diseases), their high toxicity toward mammalian cells and poor distribution in tissues have led to the continuous identification and structural modification of polyene macrolides to expand their general uses. Advances in in-depth investigations of the biosynthetic mechanism of polyene macrolides and the genetic manipulations of the polyene biosynthetic pathways provide great opportunities to generate new analogues. Recently, a novel class of polyene antibiotics was discovered (a disaccharide-containing NPP) that displays better pharmacological properties such as improved water-solubility and reduced hemolysis. In this review, we summarize the recent advances in the biosynthesis, pathway engineering, and regulation of polyene antibiotics in actinomycetes.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Antifúngicos/metabolismo , Vias Biossintéticas/genética , Engenharia Genética , Macrolídeos/metabolismo , Polienos/metabolismo , Animais , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Glicosilação , Hemólise/efeitos dos fármacos , Macrolídeos/química , Macrolídeos/farmacologia , Polienos/química , Polienos/farmacologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
14.
J Am Chem Soc ; 135(5): 1739-48, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23301954

RESUMO

Streptonigrin (STN, 1) is a highly functionalized aminoquinone alkaloid with broad and potent antitumor activity. Here, we reported the biosynthetic gene cluster of STN identified by genome scanning of a STN producer Streptomyces flocculus CGMCC4.1223. This cluster consists of 48 genes determined by a series of gene inactivations. On the basis of the structures of intermediates and shunt products accumulated from five specific gene inactivation mutants and feeding experiments, the biosynthetic pathway was proposed, and the sequence of tailoring steps was preliminarily determined. In this pathway, a cryptic methylation of lavendamycin was genetically and biochemically characterized to be catalyzed by a leucine carboxyl methyltransferase StnF2. A [2Fe-2S](2+) cluster-containing aromatic ring dioxygenase StnB1/B2 system was biochemically characterized to catalyze a regiospecific cleavage of the N-C8' bond of the indole ring of the methyl ester of lavendamycin. This work provides opportunities to illuminate the enzymology of novel reactions involved in this pathway and to create, using genetic and chemo-enzymatic methods, new streptonigrinoid analogues as potential therapeutic agents.


Assuntos
Proteína O-Metiltransferase/metabolismo , Estreptonigrina/biossíntese , Biocatálise , Metilação , Estrutura Molecular , Oxirredução , Proteína O-Metiltransferase/genética , Streptomyces/enzimologia , Estreptonigrina/química
15.
Nanotechnology ; 23(27): 275103, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22710097

RESUMO

Direct comparisons of different types of nanoparticles for drug delivery have seldom been performed. In this study we compare the physical properties and cellular activity of doxorubicin (Dox) conjugates to gold nanoparticles (Au) and InP quantum dots of comparable diameter. Although the Au particles alone are non-toxic and InP is moderately toxic, Au-Dox is more effective than InP-Dox against the Dox-resistant B16 melanoma cell line. Light exposure does not augment the efficacy of InP-Dox, suggesting that conjugates are breaking down. Electron and confocal microscopy and atomic absorption spectroscopy reveal that over 60% of the Au-Dox conjugates reach the cell nucleus. In contrast, InP-Dox enters cell nuclei to a very limited extent, although liberated Dox from the conjugates does eventually reach the nucleus. These observations are attributed to faster Dox release from Au conjugates under endosomal conditions, greater aggregation of InP-Dox with cytoplasmic proteins, and adherence of InP to membranes. These findings have important implications for design of active drug-nanoparticle conjugates.


Assuntos
Doxorrubicina/administração & dosagem , Ouro/administração & dosagem , Índio/administração & dosagem , Melanoma/tratamento farmacológico , Melanoma/patologia , Nanocápsulas/administração & dosagem , Fosfinas/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Sinergismo Farmacológico , Ouro/química , Índio/química , Camundongos , Fosfinas/química
16.
Appl Microbiol Biotechnol ; 95(1): 157-68, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22382166

RESUMO

Polyene antibiotics such as nystatin are a large family of very valuable antifungal polyketide compounds typically produced by soil actinomycetes. Previously, using a polyene cytochrome P450 hydroxylase-specific genome screening strategy, Pseudonocardia autotrophica KCTC9441 was determined to contain an approximately 125.7-kb region of contiguous DNA with a total of 23 open reading frames, which are involved in the biosynthesis and regulation of a structurally unique polyene natural product named NPP. Here, we report the complete structure of NPP, which contains an aglycone identical to nystatin and harbors a unique di-sugar moiety, mycosaminyl-(α1-4)-N-acetyl-glucosamine. A mutant generated by inactivation of a sole glycosyltransferase gene (nppDI) within the npp gene cluster can be complemented in trans either by nppDI-encoded protein or by its nystatin counterpart, NysDI, suggesting that the two sugars might be attached by two different glycosyltransferases. Compared with nystatin (which bears a single sugar moiety), the di-sugar containing NPP exhibits approximately 300-fold higher water solubility and 10-fold reduced hemolytic activity, while retaining about 50% antifungal activity against Candida albicans. These characteristics reveal NPP as a promising candidate for further development into a pharmacokinetically improved, less-cytotoxic polyene antifungal antibiotic.


Assuntos
Actinomycetales/genética , Actinomycetales/metabolismo , Antifúngicos/metabolismo , Engenharia Genética/métodos , Hemólise , Nistatina , Polienos , Actinomycetales/enzimologia , Antifúngicos/química , Biotecnologia/métodos , Candida albicans/efeitos dos fármacos , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana , Família Multigênica , Mutação , Nistatina/biossíntese , Nistatina/química , Polienos/química , Polienos/metabolismo , Solubilidade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...