Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
J Agric Food Chem ; 72(19): 10692-10709, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712500

RESUMO

Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Secas , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Temperatura Baixa , Produtos Agrícolas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ferro/metabolismo
2.
Biomed Mater ; 19(3)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636508

RESUMO

Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.


Assuntos
Traumatismos da Medula Espinal , Alicerces Teciduais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Humanos , Animais , Regeneração Nervosa , Axônios/fisiologia , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Medula Espinal , Condutividade Elétrica , Regeneração da Medula Espinal , Estimulação Elétrica/métodos
3.
Mol Cancer ; 23(1): 54, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486218

RESUMO

BACKGROUND: Phosphoinositide 3-kinases (PI3Ks) are critical regulators of diverse cellular functions and have emerged as promising targets in cancer therapy. Despite significant progress, existing PI3K inhibitors encounter various challenges such as suboptimal bioavailability, potential off-target effects, restricted therapeutic indices, and cancer-acquired resistance. Hence, novel inhibitors that overcome some of these challenges are needed. Here, we describe the characterization of KTC1101, a novel pan-PI3K inhibitor that simultaneously targets tumor cell proliferation and the tumor microenvironment. Our studies demonstrate that KTC1101 significantly increases the anti-PD-1 efficacy in multiple pre-clinical mouse models. METHODS: KTC1101 was synthesized and characterized employing chemical synthesis, molecular modeling, Nuclear Magnetic Resonance (NMR), and mass spectrometry. Its target specificity was confirmed through the kinase assay, JFCR39 COMPARE analysis, and RNA-Seq analysis. Metabolic stability was verified via liver microsome and plasma assays, pharmacokinetics determined by LC-MS/MS, and safety profile established through acute toxicity assays to determine the LD50. The antiproliferative effects of KTC1101 were evaluated in a panel of cancer cell lines and further validated in diverse BALB/c nude mouse xenograft, NSG mouse xenograft and syngeneic mouse models. The KTC1101 treatment effect on the immune response was assessed through comprehensive RNA-Seq, flow cytometry, and immunohistochemistry, with molecular pathways investigated via Western blot, ELISA, and qRT-PCR. RESULTS: KTC1101 demonstrated strong inhibition of cancer cell growth in vitro and significantly impeded tumor progression in vivo. It effectively modulated the Tumor Microenvironment (TME), characterized by increased infiltration of CD8+ T cells and innate immune cells. An intermittent dosing regimen of KTC1101 enhanced these effects. Notably, KTC1101 synergized with anti-PD-1 therapy, significantly boosting antitumor immunity and extending survival in preclinical models. CONCLUSION: KTC1101's dual mechanism of action-directly inhibiting tumor cell growth and dynamically enhancing the immune response- represents a significant advancement in cancer treatment strategies. These findings support incorporating KTC1101 into future oncologic regimens to improve the efficacy of immunotherapy combinations.


Assuntos
Linfócitos T CD8-Positivos , Fosfatidilinositol 3-Quinases , Humanos , Animais , Camundongos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Imunoterapia
4.
Comput Struct Biotechnol J ; 23: 537-548, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38235361

RESUMO

CRISPR-Cas9 systems constitute bacterial adaptive immune systems that protect against phage infections. Bacteriophages encode anti-CRISPR proteins (Acrs) that mitigate the bacterial immune response. However, the structural basis for their inhibitory actions from a molecular perspective remains elusive. In this study, through microsecond atomistic molecular dynamics simulations, we demonstrated the remarkable flexibility of Streptococcus pyogenes Cas9 (SpyCas9) and its conformational adaptability during interactions with AcrIIA4 and AcrIIA2. Specifically, we demonstrated that the binding of AcrIIA4 and AcrIIA2 to SpyCas9 induces a conformational rearrangement that causes spatial separation between the nuclease and cleavage sites, thus making the endonuclease inactive. This separation disrupts the transmission of signals between the protospacer adjacent motif recognition and nuclease domains, thereby impeding the efficient processing of double-stranded DNA. The simulation also reveals that AcrIIA4 and AcrIIA2 cause different structural variations of SpyCas9. Our research illuminates the precise mechanisms underlying the suppression of SpyCas9 by AcrIIA4 and AcrIIA2, thus presenting new possibilities for controlling genome editing with higher accuracy.

5.
Emerg Microbes Infect ; 13(1): 2287682, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994795

RESUMO

The H5N1 subtype highly pathogenic avian influenza virus (HPAIV) reveals high variability and threatens poultry production and public health. To prevent the spread of H5N1 HPAIV, we developed an H5N1 virus-like particle (VLP) vaccine based on the insect cell-baculovirus expression system. Single immunization of the H5N1 VLP vaccines induced high levels of HI antibody titres and provided effective protection against homologous virus challenge comparable to the commercial inactivated vaccine. Meanwhile, we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the adjuvants ISA 201 and ISA 71 and evaluated whether the two adjuvants could induce broadly protective immunity. The ISA 71 adjuvanted vaccine induced significantly higher levels of Th1 and Th2 immune responses and provided superior cross-protection against antigenically divergent H5N1 virus challenge than the ISA 201 adjuvanted vaccine. Importantly, increasing the vaccine dose could further enhance the cross-protective efficacy of H5N1 VLP vaccine and confer completely sterilizing protection against antigenically divergent H5N1 virus challenge, which was mediated by neutralizing antibodies. Our results suggest that the H5N1 VLP vaccine can provide broad-spectrum protection against divergent H5N1 influenza viruses as determined by adjuvant and vaccine dose.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Aviária , Vacinas de Partículas Semelhantes a Vírus , Animais , Galinhas , Eficácia de Vacinas , Anticorpos Antivirais , Imunização , Adjuvantes Imunológicos
6.
Adv Healthc Mater ; 13(9): e2303278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38112336

RESUMO

Aberrant ß-amyloid (Aß) fibrillation is the key event in Alzheimer's disease (AD), the inhibition and degradation of which are recognized as a promising therapeutic strategy to alleviate the nerve damage of AD. Photodynamic therapy (PDT) holds great potential for modulation of Aß self-assembly, which is nevertheless limited by the inefficient utilization of reactive oxygen species (ROS). Herein, an erythrocyte membrane (EM)-modified core-shell upconversion nanoparticle (UCNP/Cur@EM) is designed and fabricated as a biomimetic nanobait to improve the PDT efficiency in AD. The UCNP with the outlayer of mesoporous silica is synthesized to load a high amount of the photosensitizer (curcumin), the unique optical feature of which can trigger curcumin to generate ROS upon near-infrared light (NIR) irradiation. Integration of EM enables the biomimetic nanobait to attract Aß peptides trapped in the phospholipid bilayer, restraining the growth of Aß monomers to form aggregates and improving the utilization rate of ROS to degrade the preformed Aß aggregates. In vivo studies demonstrate that UCNP/Cur@EM irradiated by NIR enables to decrease Aß deposits, ameliorates memory deficits, and rescues cognitive functions in the APP/PS1 transgenic mouse model. A biocompatible and controllable way is provided here to inhibit the amyloid protein-associated pathological process of AD.


Assuntos
Doença de Alzheimer , Curcumina , Fotoquimioterapia , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Curcumina/uso terapêutico , Biomimética , Peptídeos beta-Amiloides , Camundongos Transgênicos
7.
New Phytol ; 241(1): 490-503, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858961

RESUMO

Tassel branch number (TBN) is a key agronomic trait for adapting to high-density planting and grain yield in maize. However, the molecular regulatory mechanisms underlying tassel branching are still largely unknown. Here, we used molecular and genetic studies together to show that ZmELF3.1 plays a critical role in regulating TBN in maize. Previous studies showed that ZmELF3.1 forms the evening complex through interacting with ZmELF4 and ZmLUX to regulate flowering in maize and that RA2 and TSH4 (ZmSBP2) suppresses and promotes TBN in maize, respectively. In this study, we show that loss-of-function mutants of ZmELF3.1 exhibit a significant increase of TBN. We also show that RA2 directly binds to the promoter of TSH4 and represses its expression, thus leading to reduced TBN. We further demonstrate that ZmELF3.1 directly interacts with both RA2 and ZmELF4.2 to form tri-protein complexes that further enhance the binding of RA2 to the promoter of TSH4, leading to suppressed TSH4 expression and consequently decreased TBN. Our combined results establish a novel functional link between the ELF3-ELF4-RA2 complex and miR156-SPL regulatory module in regulating tassel branching and provide a valuable target for genetic improvement of tassel branching in maize.


Assuntos
Inflorescência , Proteínas de Plantas , Locos de Características Quantitativas , Zea mays , Agricultura , Inflorescência/genética , Fenótipo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/metabolismo
8.
Anal Chem ; 95(46): 16868-16876, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37947381

RESUMO

In Alzheimer's disease, hypochlorous acid involved in the clearance of invading bacteria or pathogens and butyrylcholinesterase engaged in the hydrolysis of the neurotransmitter acetylcholine are relatively significantly altered. However, there are few dual detection probes for hypochlorous acid and butyrylcholinesterase. In addition, single-response probes suffer from serious off-target effects and near-infrared probes do not easily penetrate the blood-brain barrier due to their excessive molecular weight. In this work, we constructed a two-photon fluorescent probe that recognizes hypochlorous acid and butyrylcholinesterase based on a dual-lock strategy. The thiocarbonyl group is oxidized in the presence of hypochlorous acid, and the hydrolysis occurs at the 7-position ester bond in the existence of butyrylcholinesterase, releasing a strongly fluorescent fluorophore, 4-methylumbelliferone. Excellent imaging was performed in PC12 cells using this probe, and deep two-photon imaging was observed in the brains of AD mice after tail vein injection with this probe. It indicates that the probe can provide a promising tool for the more precise diagnosis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Butirilcolinesterase/metabolismo , Ácido Hipocloroso , Corantes Fluorescentes/química , Encéfalo/metabolismo
9.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687169

RESUMO

The CD13 inhibitor ubenimex is used as an adjuvant drug with chemotherapy for the treatment of cancer due to its function as an immunoenhancer, but it has limitations in its cytotoxic efficacy. The proteasome inhibitor ixazomib is a landmark drug in the treatment of multiple myeloma with a high anti-cancer activity. Herein, we conjugated the pharmacophore of ubenimex and the boric acid of ixazomib to obtain a dual CD13 and proteasome inhibitor 7 (BC-05). BC-05 exhibited potent inhibitory activity on both human CD13 (IC50 = 0.13 µM) and the 20S proteasome (IC50 = 1.39 µM). Although BC-05 displayed lower anti-proliferative activity than that of ixazomib in vitro, an advantage was established in the in vivo anti-cancer efficacy and prolongation of survival time, which may be due to its anti-metastatic and immune-stimulating activity. A pharmacokinetic study revealed that BC-05 is a potentially orally active agent with an F% value of 24.9%. Moreover, BC-05 showed more favorable safety profiles than those of ixazomib in preliminary toxicity studies. Overall, the results indicate that BC-05 is a promising drug candidate for the treatment of multiple myeloma.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Inibidores de Proteassoma/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Terapia Enzimática , Antivirais
10.
Comput Struct Biotechnol J ; 21: 4159-4171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675287

RESUMO

Siglecs are important lectins found in different types of immune cells and function as regulatory molecules by recognizing self-associated glycans and converting extracellular interactions into signals for inhibiting immune cell functions. Although many Siglecs have been found to show broad specificities and recognize different types of sulfated oligosaccharides, Siglec-8 and Siglec-9 displayed a high degree of specificity for sialyl N-acetyllactosamine (sLacNAc) with sulfations at O6-positions of the galactose (6'-sulfation) and N-acetylglucosamine (6-sulfation), respectively. Siglec-3 was recently discovered to bind sLacNAc both sulfations. In addition to a conserved arginine residue for binding to sialic acid residue, the sequence variety in the CC' loop may provide binding specificities to sulfated oligosaccharides in Siglecs. Thus, the present study employed molecular models to study the impact of different residues in the CC' loops of Siglec-8/9/3 to the recognitions of 6-sulfations in Gal and/or GlcNAc of sLacNAc. The negatively charged residues in the CC' loop of Siglec-9 formed unfavorable electrostatic repulsions with the 6-sulfate in Gal and resulted no recognitions, in contrast to the favorable interactions formed between the positively charged residues in the CC' loop of Siglec-8 and the 6-sulfate in Gal resulting strong specificity. A two-state binding model was proposed for Siglec-3 recognizing 6-sulfations in Gal and GlcNAc of sLacNAc, as the neutral residues in the CC' loop of Siglec-3 could not form strong favorable interactions to lock the 6-sulfate in Gal within a single binding pose or strong unfavorable interactions to repel the 6-sulfate in Gal. The oligosaccharide adopted two distinctive binding poses and oriented the sulfate groups to form interactions with residues in the CC' loop and G-strand. The present study provided a structural mechanism for the sequence variety in the CC' loop of Siglec-8/9/3 determining the recognitions to the sulfated oligosaccharides and offered insights into the binding specificities for Siglecs.

11.
Vaccines (Basel) ; 11(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37631886

RESUMO

H7N9 avian influenza virus (AIV) has caused huge losses in the poultry industry and impacted human public health security, and still poses a potential threat. Currently, immune prevention and control of avian influenza relies on traditional inactivated vaccines; however, they have some limitations and genetically engineered avian influenza subunit vaccines may be potential candidate vaccines. In this study, a T169A mutation in the HA protein derived from H7N9 AIV A/Chicken/Guangdong/16876 (H7N9-16876) was generated using the baculovirus expression system (BVES). The results showed that the mutant (HAm) had significantly increased thermostability compared with the wild-type HA protein (HA-WT). Importantly, immunizing chickens with HAm combined with ISA 71VG elicited higher cross-reactive hemagglutination inhibition (HI) antibody responses and cytokine (IFN-γ and IL-4) secretion. After a lethal challenge with heterologous H7N9 AIV, the vaccine conferred chickens with 100% (10/10) clinical protection and effectively inhibited viral shedding, with 90% (9/10) of the chickens showing no virus shedding. The thermostability of HAm may represent an advantage in practical vaccine manufacture and application. In general, the HAm generated in this study represents a promising subunit vaccine candidate for the prevention and control of H7N9 avian influenza.

12.
Chin Med ; 18(1): 102, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592331

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoralea corylifolia Linn. (BGZ) is a commonly used traditional Chinese medicine (TCM) for the treatment of kidney-yang deficiency syndrome (Yangsyn) with good curative effect and security. However, BGZ was also reported to induce liver injury in recent years. According to TCM theory, taking BGZ may induce a series of adverse reactions in patients with kidney-yin deficiency syndrome (Yinsyn), which suggests that BGZ-induced liver damage may be related to its unreasonable clinical use. AIM OF THE STUDY: Liver injury caused by TCM is a rare but potentially serious adverse drug reaction, and the identification of predisposed individuals for drug-induced liver injury (DILI) remains challenging. The study aimed to investigate the differential responses to BGZ in Yangsyn and Yinsyn rat models and identify the corresponding characteristic biomarkers. MATERIALS AND METHODS: The corresponding animal models of Yangsyn and Yinsyn were induced by hydrocortisone and thyroxine + reserpine respectively. Body weight, organ index, serum biochemistry, and Hematoxylin and Eosin (HE) staining were used to evaluate the liver toxicity effect of BGZ on rats with Yangsyn and Yinsyn. Transcriptomics and metabonomics were used to screen the representative biomarkers (including metabolites and differentially expressed genes (DEGs)) changed by BGZ in Yangsyn and Yinsyn rats, respectively. RESULTS: The level changes of liver organ index, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), suggested that BGZ has liver-protective and liver-damaging effects on Yangsyn and Yinsyn rats, respectively, and the results also were confirmed by the pathological changes of liver tissue. The results showed that 102 DEGs and 27 metabolites were significantly regulated related to BGZ's protective effect on Yangsyn, which is mainly associated with the glycerophospholipid metabolism, arachidonic acid metabolism, pantothenate, and coenzyme A (CoA) biosynthesis pathways. While 28 DEGs and 31 metabolites, related to the pathway of pantothenate and CoA biosynthesis, were significantly regulated for the BGZ-induced liver injury in Yinsyn. Furthermore, 4 DEGs (aldehyde dehydrogenase 1 family member B1 (Aldh1b1), solute carrier family 25 member 25 (Slc25a25), Pim-3 proto-oncogene, serine/threonine kinase (Pim3), out at first homolog (Oaf)) and 4 metabolites (phosphatidate, phosphatidylcholine, N-Acetylleucine, biliverdin) in the Yangsyn group and 1 DEG [galectin 5 (Lgals5)] and 1 metabolite (5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate) in Yinsyn group were significantly correlated to the ALT and AST levels of BGZ treated and untreated groups (receiver operating characteristic (ROC) ≥ 0.9). CONCLUSIONS: Yinsyn and Yangsyn are the predisposed syndromes for BGZ to exert liver damage and liver protection respectively, which are mainly related to the regulation of amino acid metabolism, lipid metabolism, energy metabolism, and metabolism of cofactors and vitamins. The results further suggest that attention should be paid to the selection of predisposed populations when using drugs related to the regulation of energy metabolism, and the Yinsyn/Yangsyn animal models based on the theory of TCM syndromes may be a feasible method for identifying the susceptible population to receive TCM.

13.
Basic Clin Pharmacol Toxicol ; 133(3): 226-236, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37394756

RESUMO

Sapanisertib is an orally bioavailable ATP-dependent high-potential raptor-mTOR (TORC1) inhibitor with antineoplastic activity. Here, the impact of sapanisertib was assessed on transforming growth factor-ß1 (TGF-ß1)-treated L929 and A549 cells and on a rat model of bleomycin pulmonary fibrosis. First, in A549 cells treated with TGF-ß1, sapanisertib significantly suppressed the TGF-ß1-induced epithelial-mesenchymal transition, with elevated and reduced E-cadherin and vimentin expression, respectively. In L929 cells treated with TGF-ß1, sapanisertib significantly blocked the TGF-ß1-induced cell proliferation, with decreases in the extracellular matrix-related proteins collagens I and III and smooth muscle actin and in the mechanism-related proteins hypoxia-inducing factor, mTOR, p70S6K, and Wnt5a. Compared with bleomycin alone, continuous gavage administration of sapanisertib for 14 days reduced pathological scores in bleomycin-induced pulmonary fibrosis rats, with decreases in collagen deposition and in the same proteins as in L929 and A549 cells. Accordingly, our findings show that sapanisertib can ameliorate experimental pulmonary fibrosis by inhibiting Wnt5a/mTOR/HIF-1α/p70S6K.


Assuntos
Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa , Transição Epitelial-Mesenquimal , Bleomicina/farmacologia , Serina-Treonina Quinases TOR , Proteína Wnt-5a
14.
Mol Oncol ; 17(12): 2618-2636, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37501404

RESUMO

Blocking the mitogen-activated protein kinase (MAPK) pathway with the MEK1/2 inhibitor trametinib has produced promising results in patients with head and neck squamous cell carcinoma (HNSCC). In the current study, we showed that trametinib treatment leads to overexpression and activation of the epidermal growth factor receptor (EGFR) in HNSCC cell lines and patient-derived xenografts. Knockdown of EGFR improved trametinib treatment efficacy both in vitro and in vivo. Mechanistically, we demonstrated that trametinib-induced EGFR overexpression hyperactivates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. In vitro, blocking the PI3K pathway with GDC-0941 (pictilisib), or BYL719 (alpelisib), prevented AKT pathway hyperactivation and enhanced the efficacy of trametinib in a synergistic manner. In vivo, a combination of trametinib and BYL719 showed superior antitumor efficacy vs. the single agents, leading to tumor growth arrest. We confirmed our findings in a syngeneic murine head and neck cancer cell line in vitro and in vivo. Taken together, our findings show that trametinib treatment induces hyperactivation of EGFR/PI3K/AKT; thus, blocking of the EGFR/PI3K pathway is required to improve trametinib efficacy in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Fosfatidilinositol 3-Quinase , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Receptores ErbB/metabolismo , Linhagem Celular Tumoral
15.
Front Pharmacol ; 14: 1200538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284309

RESUMO

Metabolic reprogramming is a hallmark of human cancer. Cancer cells exhibit enhanced glycolysis, which allows glycolytic intermediates to be diverted into several other biosynthetic pathways, such as serine synthesis. Here, we explored the anti-cancer effects of the pyruvate kinase (PK) M2 inhibitor PKM2-IN-1 alone or in combination with the phosphoglycerate dehydrogenase (PHGDH) inhibitor NCT-503 in human NSCLC A549 cells in vitro and in vivo. PKM2-IN-1 inhibited proliferation and induced cell cycle arrest and apoptosis, with increased glycolytic intermediate 3-phosphoglycerate (3-PG) level and PHGDH expression. The combination of PKM2-IN-1 and NCT-503 further suppressed cancer cell proliferation and induced G2/M phase arrest, accompanied by the reduction of ATP, activation of AMPK and inhibition of its downstream mTOR and p70S6K, upregulation of p53 and p21, as well as downregulation of cyclin B1 and cdc2. In addition, combined treatment triggered ROS-dependent apoptosis by affecting the intrinsic Bcl-2/caspase-3/PARP pathway. Moreover, the combination suppressed glucose transporter type 1 (GLUT1) expression. In vivo, co-administration of PKM2-IN-1 and NCT-503 significantly inhibited A549 tumor growth. Taken together, PKM2-IN-1 in combination with NCT-503 exhibited remarkable anti-cancer effects through induction of G2/M cell cycle arrest and apoptosis, in which the metabolic stress induced ATP reduction and ROS augmented DNA damage might be involved. These results suggest that the combination of PKM2-IN-1 and NCT-503 might be a potential strategy for the therapy of lung cancer.

16.
New Phytol ; 239(4): 1505-1520, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37306069

RESUMO

Flowering time is a key agronomic trait determining environmental adaptation and yield potential of crops. The regulatory mechanisms of flowering in maize still remain rudimentary. In this study, we combine expressional, genetic, and molecular studies to identify two homologous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors ZmSPL13 and ZmSPL29 as positive regulators of juvenile-to-adult vegetative transition and floral transition in maize. We show that both ZmSPL13 and ZmSPL29 are preferentially expressed in leaf phloem, vegetative and reproductive meristem. We show that vegetative phase change and flowering time are moderately delayed in the Zmspl13 and Zmspl29 single knockout mutants and more significantly delayed in the Zmspl13/29 double mutants. Consistently, the ZmSPL29 overexpression plants display precocious vegetative phase transition and floral transition, thus early flowering. We demonstrate that ZmSPL13 and ZmSPL29 directly upregulate the expression of ZmMIR172C and ZCN8 in the leaf, and of ZMM3 and ZMM4 in the shoot apical meristem, to induce juvenile-to-adult vegetative transition and floral transition. These findings establish a consecutive signaling cascade of the maize aging pathway by linking the miR156-SPL and the miR172-Gl15 regulatory modules and provide new targets for genetic improvement of flowering time in maize cultivars.


Assuntos
Flores , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Flores/fisiologia , Zea mays/genética , Zea mays/metabolismo , Folhas de Planta/metabolismo , Meristema/genética , Meristema/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375166

RESUMO

The intricate complex system of the differentiation 47 (CD47) and the signal-regulatory protein alpha (SIRPα) cluster is a crucial target for cancer immunotherapy. Although the conformational state of the CD47-SIRPα complex has been revealed through crystallographic studies, further characterization is needed to fully understand the binding mechanism and to identify the hot spot residues involved. In this study, molecular dynamics (MD) simulations were carried out for the complexes of CD47 with two SIRPα variants (SIRPαv1, SIRPαv2) and the commercially available anti-CD47 monoclonal antibody (B6H12.2). The calculated binding free energy of CD47-B6H12.2 is lower than that of CD47-SIRPαv1 and CD47-SIRPαv2 in all the three simulations, indicating that CD47-B6H12.2 has a higher binding affinity than the other two complexes. Moreover, the dynamical cross-correlation matrix reveals that the CD47 protein shows more correlated motions when it binds to B6H12.2. Significant effects were observed in the energy and structural analyses of the residues (Glu35, Tyr37, Leu101, Thr102, Arg103) in the C strand and FG region of CD47 when it binds to the SIRPα variants. The critical residues (Leu30, Val33, Gln52, Lys53, Thr67, Arg69, Arg95, and Lys96) were identified in SIRPαv1 and SIRPαv2, which surround the distinctive groove regions formed by the B2C, C'D, DE, and FG loops. Moreover, the crucial groove structures of the SIRPα variants shape into obvious druggable sites. The C'D loops on the binding interfaces undergo notable dynamical changes throughout the simulation. For B6H12.2, the residues Tyr32LC, His92LC, Arg96LC, Tyr32HC, Thr52HC, Ser53HC, Ala101HC, and Gly102HC in its initial half of the light and heavy chains exhibit obvious energetic and structural impacts upon binding with CD47. The elucidation of the binding mechanism of SIRPαv1, SIRPαv2, and B6H12.2 with CD47 could provide novel perspectives for the development of inhibitors targeting CD47-SIRPα.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Humanos , Receptores Imunológicos/química , Antígenos de Diferenciação/química , Antígeno CD47/genética , Antígeno CD47/química , Anticorpos Monoclonais , Imunoterapia , Fagocitose , Neoplasias/metabolismo
18.
Discov Oncol ; 14(1): 84, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256374

RESUMO

PURPOSE: The present study aimed to explore the anticancer activity of hirsuteine (HST), an indole alkaloid from the traditional Chinese herbal medicine Uncaria rhynchophylla, against colorectal cancer (CRC) and the underlining mechanism. METHODS: MTT, colony formation, flow cytometry and MDC staining were conducted to confirm the antiproliferative effect of HST on human CRC cells harboring different p53 status. Protein expressions were evaluated by the Western blot analysis. p53 protein half-life and the interaction between p53 and MDM2 were investigated using cycloheximide (CHX)-chase assay and Co-immunoprecipitation (Co-IP), respectively. Transcriptional activity of p53 was examined by qRT-PCR and Chromatin immunoprecipitation (ChIP). Xenograft tumor in nude mice was created to evaluate in vivo anticancer effect of HST against CRC. RESULTS: HST inhibited cell growth, arrested cell cycle and induced autophagy, showing efficient anticancer effects on CRC cells independent of p53 status. In HCT-8 cells, HST prolonged wtp53 half-life, and upregulated mRNA level of p21, suggesting that HST activated the p53 pathway through enhancement of wtp53 stability and transcriptional activity. Meanwhile in SW620 cells, HST induced MDM2-mediated proteasomal degradation of mutp53R273H, increased the DNA-binding ability of mutp53R273H at the p21 promoter, and upregulated mRNA levels of p21 and MDM2, demonstrating the depletion of mutp53R273H and restoration of its wild-type-like properties by HST. p53 knockdown by siRNA significantly impaired the growth inhibition of HST on HCT-8 and SW620 cells. Moreover, HST showed anticancer effects in xenograft tumors, accompanied with an opposite regulation of wtp53 and mutp53 R273H in mechanism. CONCLUSION: This study revealed the anticancer efficacy of HST against CRC via opposite modulation of wtp53 and mutp53 R273H, indicating the potential of HST to be a CRC drug candidate targeting p53 signaling.

19.
Nat Prod Rep ; 40(9): 1464-1478, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37070562

RESUMO

Covering: up to 202216.19% of reported natural products (NPs) in the Dictionary of Natural Products (DNP) are glycosides. As one of the most important NPs' structural modifications, glycosylation can change the NPs' polarity, making the aglycones more amphipathic. However, until now, little is known about the general distribution profile of the natural glycosides in different biological sources or structural types. The reason, structural or species preferences of the natural glycosylation remain unclear. In this highlight, chemoinformatic methods were employed to analyze the natural glycosides from DNP, the most comprehensively annotated NP database. We found that the glycosylation ratios of NPs from plants, bacteria, animals and fungi decrease successively, which are 24.99%, 20.84%, 8.40% and 4.48%, respectively. Echinoderm-derived NPs (56.11%) are the most frequently glycosylated, while those produced by molluscs (1.55%), vertebrates (2.19%) and Rhodophyta (3.00%) are the opposite. Among the diverse structural types, a large proportion of steroids (45.19%), tannins (44.78%) and flavonoids (39.21%) are glycosides, yet aminoacids and peptides (5.16%), alkaloids (5.66%) are comparatively less glycosylated. Even within the same biological source or structural type, their glycosylation rates fluctuate drastically between sub- or cross-categories. The substitute patterns of flavonoid and terpenoid glycosides and the most frequently glycosylated scaffolds were identified. NPs with different glycosylation levels occupy different chemical spaces of physicochemical property and scaffold. These findings could help us to interpret the preference of NPs' glycosylation and investigate how NP glycosylation could aid NP-based drug discovery.


Assuntos
Produtos Biológicos , Glicosídeos , Animais , Glicosídeos/química , Quimioinformática , Flavonoides/química , Plantas , Extratos Vegetais , Produtos Biológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...