Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1162826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546249

RESUMO

Terpenes are the main class of secondary metabolites produced in response to pest and germ attacks. In maize (Zea mays L.), they are the essential components of the herbivore-induced plant volatile mixture, which functioned as a direct or indirect defense against pest and germ attacks. In this study, 43 maize terpene synthase gene (ZmTPS) family members were systematically identified and analyzed through the whole genomes of maize. Nine genes, including Zm00001d032230, Zm00001d045054, Zm00001d024486, Zm00001d004279, Zm00001d002351, Zm00001d002350, Zm00001d053916, Zm00001d015053, and Zm00001d015054, were isolated for their differential expression pattern in leaves after corn borer (Ostrinia nubilalis) bite. Additionally, six genes (Zm00001d045054, Zm00001d024486, Zm00001d002351, Zm00001d002350, Zm00001d015053, and Zm00001d015054) were significantly upregulated in response to corn borer bite. Among them, Zm00001d045054 was cloned. Heterologous expression and enzyme activity assays revealed that Zm00001d045054 functioned as d-limonene synthase. It was renamed ZmDLS. Further analysis demonstrated that its expression was upregulated in response to corn borer bites and Fusarium graminearum attacks. The mutant of ZmDLS downregulated the expressions of Zm00001d024486, Zm00001d002351, Zm00001d002350, Zm00001d015053, and Zm00001d015054. It was more attractive to corn borer bites and more susceptible to F. graminearum infection. The yeast one-hybrid assay and dual-luciferase assay showed that ZmMYB76 and ZmMYB101 could upregulate the expression of ZmDLS by binding to the promoter region. This study may provide a theoretical basis for the functional analysis and transcriptional regulation of terpene synthase genes in crops.

2.
Front Plant Sci ; 13: 1013412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388502

RESUMO

Anthocyanins are the visual pigments that present most of the colors in plants. Its biosynthesis requires the coordinated expression of structural genes and regulatory genes. Pericarps are the rich sources of anthocyanins in maize seeds. In the experiment, the transcriptomes of transparent and anthocyanins-enriched pericarps at 15, 20, and 25 DAP were obtained. The results output 110.007 million raw reads and 51407 genes' expression matrix. Using data filtration in R language, 2057 genes were eventually identified for weighted gene co-expression network analysis. The results showed that 2057 genes were classified into ten modules. The cyan module containing 183 genes was confirmed to be the key module with the highest correlation value of 0.98 to the anthocyanins trait. Among 183 genes, seven structural genes were mapped the flavonoid biosynthesis pathway, and a transcription factor Lc gene was annotated as an anthocyanin regulatory gene. Cluster heatmap and gene network analysis further demonstrated that Naringenin, 2-oxoglutarate 3-dioxygenase (Zm00001d001960), Dihydroflavonol 4-reductase (Zm00001d044122), Leucoanthocyanidin dioxygenase (Zm00001d014914), anthocyanin regulatory Lc gene (Zm00001d026147), and Chalcone synthase C2 (Zm00001d052673) participated in the anthocyanins biosynthesis. And the transcription factor anthocyanin regulatory Lc gene Zm00001d026147 may act on the genes Chalcone synthase C2 (Zm00001d052673) and Dihydroflavonol 4-reductase (Zm00001d044122). The yeast one-hybrid assays confirmed that the Lc protein could combine with the promoter region of C2 and directly regulate the anthocyanin biosynthesis in the pericarp. These results may provide a new sight to uncover the module and hub genes related to anthocyanins biosynthesis in plants.

3.
Front Plant Sci ; 13: 915400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755662

RESUMO

The endosperm of corn kernel consists of two components, a horny endosperm, and a floury endosperm. In the experiment, a kind of floury endosperm corn was identified. The result of phenotypic trait analysis and determination of amino acid content showed that the floury endosperm filled with the small, loose, and scattered irregular spherical shape starch granules and contained higher content of amino acid. The starch biochemical properties are similar between floury corns and regular flint corn. By using dynamically comparative transcriptome analysis of endosperm at 20, 25, and 30 DAP, a total of 113.42 million raw reads and 50.508 thousand genes were obtained. By using the weighted gene co-expression network analysis, 806 genes and six modules were identified. And the turquoise module with 459 genes was proved to be the key module closely related to the floury endosperm formation. Nine zein genes in turquoise module, including two zein-alpha A20 (Zm00001d019155 and Zm00001d019156), two zein-alpha A30 (Zm00001d048849 and Zm00001d048850), one 50 kDa gamma-zein (Zm00001d020591), one 22 kDa alpha-zein 14 (Zm00001d048817), one zein-alpha 19D1 (Zm00001d030855), one zein-alpha 19B1 (Zm00001d048848), and one FLOURY 2 (Zm00001d048808) were identified closely related the floury endosperm formation. Both zein-alpha 19B1 (Zm00001d048848) and zein-alpha A30 (Zm00001d048850) function as source genes with the highest expression level in floury endosperm. These results may provide the supplementary molecular mechanism of structure and nutrient formation for the floury endosperm of maize.

4.
Front Plant Sci ; 13: 840439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371140

RESUMO

Genetic reprogramming of differentiated cells is studied broadly in multicellular Viridiplantae as an adaptation to herbivory or damage; however, mechanisms underlying cell development and redifferentiation are largely unknown in red algae, their nearest multicellular relatives. Here we investgate cell reprogramming in the widely cultivated, edible seaweed Neopyropia yezoesis ("nori"), where vegetative cells in wounded blades differentiate and release as large numbers of asexual spores. Based upon physiological changes and transcriptomic dynamics after wound stress in N. yezoensis and its congener Neoporphyra haitanensis, another cultivar that does not differentiate spores after wounding, we propose a three-phase model of wound-induced spore development in N. yezoensis. In Phase I, propagation of ROS by RBOH and SOD elicites systematic transduction of the wound signal, while Ca2+ dependent signaling induces cell reprogramming. In Phase II, a TOR signaling pathway and regulation of cyclin and CDK genes result in cell divisions that spread inward from the wound edge. Once sporangia form, Phase III involves expression of proteins required for spore maturation and cell wall softening. Our analyses not only provide the first model for core molecular processes controlling cellular reprogramming in rhodophytes, but also have practical implications for achieving greater control over seeding in commercial nori farming.

5.
J Integr Plant Biol ; 63(9): 1600-1605, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34191398

RESUMO

An enhanced CDA-like (eCDAL) was established from Japanese lamprey CDA1-like 4 to achieve a high editing frequency in a broad region as a C-terminal cytosine base editors (CT-CBE). Then, a novel plant dual-base editor version 1(pDuBE1) was developed by integrating TadA-8e into eCDAL. The editing efficiency of pDuBE1 could reach to 87.6%, with frequencies of concurrent A-to-G and C-to-T conversions as high as 49.7% in stably transformed plant cells. Our results showed that pDuBE1 could mediate robust dual editing in plant genome, providing a powerful manipulation tool for precise crop breeding and screening platforms for in planta direct evolution.


Assuntos
Citidina Desaminase/metabolismo , Edição de Genes/métodos , Genoma de Planta , Adenina/metabolismo , Animais , Lampreias/genética , Oryza , Plantas Geneticamente Modificadas
6.
Mol Plant ; 14(2): 352-360, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33383203

RESUMO

Streptococcus pyogenes Cas9 (SpCas9) is the most widely used genome editing tool in plants. The editing induced by SpCas9 strictly requires a canonical NGG protospacer-adjacent motif (PAM), significantly limiting its scope of application. Recently, five SpCas9 variants, SpCas9-NRRH, SpCas9-NRCH, SpCas9-NRTH, SpG, and SpRY, were developed to recognize non-canonical PAMs in human cells. In this study, these variants were engineered for plant genome editing, and their targeted mutagenesis capabilities were comprehensively examined at various canonical and non-canonical PAM sites in rice (Oryza sativa) by stable transformation. Moreover, both cytosine base editors using a rat APOBEC1 or a human APOBEC3a and adenine base editors using a directly evolved highly compatible TadA∗-8e deaminase were developed from these SpCas9 variants. Our results demonstrated that the developed SpCas9 variants-based base editors readily generated conversions between C∙G and T∙A in the target sites with non-canonical PAMs in transgenic rice lines. Collectively, the toolbox developed in this study substantially expands the scope of SpCas9-mediated genome editing and will greatly facilitate gene disruption and precise editing in plants.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , Mutação/genética , Motivos de Nucleotídeos/genética , Oryza/genética , Streptococcus pyogenes/genética , Genoma de Planta , Mutagênese/genética , Plantas Geneticamente Modificadas
7.
Nat Commun ; 11(1): 4028, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788591

RESUMO

Changes in atmospheric CO2 concentration have played a central role in algal and plant adaptation and evolution. The commercially important red algal genus, Pyropia (Bangiales) appears to have responded to inorganic carbon (Ci) availability by evolving alternating heteromorphic generations that occupy distinct habitats. The leafy gametophyte inhabits the intertidal zone that undergoes frequent emersion, whereas the sporophyte conchocelis bores into mollusk shells. Here, we analyze a high-quality genome assembly of Pyropia yezoensis to elucidate the interplay between Ci availability and life cycle evolution. We find horizontal gene transfers from bacteria and expansion of gene families (e.g. carbonic anhydrase, anti-oxidative related genes), many of which show gametophyte-specific expression or significant up-regulation in gametophyte in response to dehydration. In conchocelis, the release of HCO3- from shell promoted by carbonic anhydrase provides a source of Ci. This hypothesis is supported by the incorporation of 13C isotope by conchocelis when co-cultured with 13C-labeled CaCO3.


Assuntos
Carbono/metabolismo , Genoma , Rodófitas/genética , Rodófitas/metabolismo , Movimentos da Água , Exoesqueleto/química , Animais , Antioxidantes/farmacologia , Composição de Bases/genética , Evolução Biológica , Carbonato de Cálcio/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Núcleo Celular/genética , Dosagem de Genes , Perfilação da Expressão Gênica , Transferência Genética Horizontal/genética , Moluscos , Fotossíntese/efeitos dos fármacos , Ploidias , Rodófitas/efeitos dos fármacos , Superóxido Dismutase/genética , Transcrição Gênica/efeitos dos fármacos
8.
Front Plant Sci ; 11: 867, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655600

RESUMO

Pyropia yezoensis, commonly known as "Nori" or "Laver" is an economically important marine crop. In natural or selected populations of P. yezoensis, coloration mutants are frequently observed. Various coloration mutants are excellent materials for genetic research and study photosynthesis. However, the candidate gene controlling the Pyropia coloration phenotype remains unclear to date. QTL-seq, in combination with kompetitive allele-specific PCR (KASP) and RNA-seq, can be generally applied to population genomics studies to rapidly identify genes that are responsible for phenotypes showing extremely opposite traits. Through cross experiments between the wild line RZ and red-mutant HT, offsprings with 1-4 sectors chimeric blade were generated. Statistical analyses revealed that the red thallus coloration phenotype is conferred by a single nuclear allele. Two-pair populations, consisting of 24 and 56 wild-type/red-type single-genotype sectors from F1 progeny, were used in QTL-seq to detect a genomic region in P. yezoensis harboring the red coloration locus. Based on a high-quality genome, we first identified the candidate region within a 3.30-Mb region at the end of chromosome 1. Linkage map-based QTL analysis was used to confirm the candidate region identified by QTL-seq. Then, four KASP markers developed in this region were used to narrow down the candidate region to a 1.42-Mb region. Finally, we conducted RNA-seq to focus on 13 differentially expressed genes and further predicted rcl-1, which contains one non-synonymous SNP [A/C] in the coding region that could be regulating red thallus coloration in P. yezoensis. Our results provide novel insights into the underlying mechanism controlling blade coloration, which is a desirable trait in algae.

9.
Mol Ecol Resour ; 20(1): 216-227, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31600851

RESUMO

Pyropia haitanensis (Bangiales, Rhodophyta), a major economically important marine crop, is also considered as an ideal research model of Rhodophyta to address several major biological questions such as sexual reproduction and adaptation to intertidal abiotic stresses. However, comparative genomic analysis to decipher the underlying molecular mechanisms is hindered by the lack of high-quality genome information. Therefore, we integrated sequencing data from Illumina short-read sequencing, PacBio single-molecule sequencing and BioNano optical genome mapping. The assembled genome was approximately 53.3 Mb with an average GC% of 67.9%. The contig N50 and scaffold N50 were 510.3 kb and 5.8 Mb, respectively. Additionally, 10 superscaffolds representing 80.9% of the total assembly (42.7 Mb) were anchored and orientated to the 5 linkage groups based on markers and genetic distance; this outcome is consistent with the karyotype of five chromosomes (n = 5) based on cytological observation in P. haitanensis. Approximately 9.6% and 14.6% of the genomic region were interspersed repeat and tandem repeat elements, respectively. Based on full-length transcriptome data generated by PacBio, 10,903 protein-coding genes were identified. The construction of a genome-wide phylogenetic tree demonstrated that the divergence time of P. haitanensis and Porphyra umbilicalis was ~204.4 Ma. Interspecies comparison revealed that 493 gene families were expanded and that 449 were contracted in the P. haitanensis genome compared with those in the Po. umbilicalis genome. The genome identified is of great value for further research on the genome evolution of red algae and genetic adaptation to intertidal stresses.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Rodófitas/genética , Filogenia , Proteínas de Plantas/genética , Rodófitas/classificação
10.
Mar Genomics ; 43: 43-49, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30279127

RESUMO

Pyropia yezoensis is an economically important marine macroalgae, naturally distributed in the upper intertidal zone. Owing to the nature of its habitat, the thallus will periodically be exposed to seawater or atmosphere, and can lose up to 95% of its cellular water content. This makes the alga an ideal research model to investigate the mechanisms of desiccation tolerance. In this study, we investigated the response mechanisms to dehydration and rehydration stresses at the transcription level in Pyropia yezoensis. The differently expressed genes were analyzed based on the different functions of encoding proteins: effector proteins (chloroplast proteins, macromolecular protective substances, and toxicity degradation enzymes) and regulatory proteins (protein kinases and phosphatases). Under osmotic stress, the unigenes related to photosynthesis were down-regulated significantly while those encoding glutathione transferase, superoxide dismutase and heat shock proteins were up-regulated significantly. We inferred that the photosynthetic activity was reduced to prevent damage caused by photosynthetic by-products and that the expression of antioxidant enzyme was increased to prevent the damage associated with reactive oxygen species. Additionally, unigenes encoding serine/threonine kinases and phospholipases were up-regulated in response to osmotic stress, indicating that these kinases play an important role in osmotolerance. Our work will serve as an essential foundation for the understanding of desiccation tolerance mechanisms in Pyropia yezoensis in the upper intertidal zones of rocky coasts.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Rodófitas/fisiologia , Alga Marinha/fisiologia , Transcriptoma , Dessecação , Regulação para Baixo/fisiologia , Pressão Osmótica , Rodófitas/genética , Alga Marinha/genética , Regulação para Cima/fisiologia
11.
Plant Physiol ; 179(1): 195-208, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30397023

RESUMO

The reaction center (RC) of photosystem II (PSII), which is composed of D1, D2, PsbI, and cytochrome b559 subunits, forms at an early stage of PSII biogenesis. However, it is largely unclear how these components assemble to form a functional unit. In this work, we show that synthesis of the PSII core proteins D1/D2 and formation of the PSII RC is blocked specifically in the absence of ONE-HELIX PROTEIN1 (OHP1) and OHP2 proteins in Arabidopsis (Arabidopsis thaliana), indicating that OHP1 and OHP2 are essential for the formation of the PSII RC. Mutagenesis of the chlorophyll-binding residues in OHP proteins impairs their function and/or stability, suggesting that they may function in the binding of chlorophyll in vivo. We further show that OHP1, OHP2, and HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244), together with D1, D2, PsbI, and cytochrome b559, form a complex. We designated this complex the PSII RC-like complex to distinguish it from the RC subcomplex in the intact PSII complex. Our data imply that OHP1, OHP2, and HCF244 are present in this PSII RC-like complex for a limited time at an early stage of PSII de novo assembly and of PSII repair under high-light conditions. In a subsequent stage of PSII biogenesis, OHP1, OHP2, and HCF244 are released from the PSII RC-like complex and replaced by the other PSII subunits. Together with previous reports on the cyanobacterium Synechocystis, our results demonstrate that the process of PSII RC assembly is highly conserved among photosynthetic species.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Ligação à Clorofila/fisiologia , Fatores de Iniciação em Eucariotos/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Alinhamento de Sequência , Tilacoides/metabolismo
12.
Sci Rep ; 8(1): 10688, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013114

RESUMO

Red algae are important primary photosynthetic organisms. The Bangiales comprise a morphologically diverse order of red algae. Until now, complete plastid genomes of the Bangiales were only mapped for foliose species. To date, no filamentous plastomes have been published. The aim of this study was to determine and analyze the complete plastid genome of the filamentous marine species 'Bangia' sp. OUCPT-01. It is a circular molecule, 196,913 bps in length with a guanine-cytosine (GC) content of 33.5%. It has a quadripartite structure with two single copy regions separated by two direct non-identical repeats. It has 205 protein-coding genes, 37 tRNAs, and 6 rRNAs. Therefore, it has a high coding capacity and is highly similar to other Bangiales species in terms of content and structure. In particular, it reveals that the genera in the Bangiales have highly conserved gene content and plastome synteny. This plastome and existing data provide insights into the phylogenetic relationships among the Bangiales genera of the Rhodophyta. According to its plastid- and mitochondrial genomes, 'Bangia 2' is a sister group to Porphyra. However, the position of Wildemania schizophylla in the Bangiales is still controversial. Our results show that the Bangiales divergence time was ~225 million years ago.


Assuntos
Especiação Genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Filogenia , Rodófitas/genética , Evolução Molecular , Genoma Mitocondrial/genética , Plastídeos/genética , RNA de Transferência/genética , Rodófitas/classificação , Sintenia/genética
13.
BMC Genomics ; 19(1): 251, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653512

RESUMO

BACKGROUND: Pyropia yezoensis, a marine red alga, is an ideal research model for studying the mechanisms of abiotic stress tolerance in intertidal seaweed. Real-time quantitative polymerase chain reaction (RT-qPCR) is the most commonly used method to analyze gene expression levels. To accurately quantify gene expression, selection and validation of stable reference genes is required. RESULTS: We used transcriptome profiling data from different abiotic stress treatments to identify six genes with relatively stable expression levels: MAP, ATPase, CGS1, PPK, DPE2, and FHP. These six genes and three conventional reference genes, UBC, EF1-α, and eif4A, were chosen as candidates for optimal reference gene selection. Five common statistical approaches (geNorm, ΔCt method, NormFinder, BestKeeper, and ReFinder) were used to identify the stability of each reference gene. Our results show that: MAP, UBC, and FHP are stably expressed in all analyzed conditions; CGS1 and UBC are stably expressed under conditions of dehydration stress; and MAP, UBC, and CGS1 are stably expressed under conditions of temperature stress. CONCLUSION: We have identified appropriate reference genes for RT-qPCR in P. yezoensis under different abiotic stress conditions which will facilitate studies of gene expression under these conditions.


Assuntos
Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real/normas , Rodófitas/genética , Estresse Fisiológico/genética , Genes de Plantas , Padrões de Referência , Rodófitas/metabolismo
14.
PLoS One ; 12(12): e0186986, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29240755

RESUMO

Bangia fuscopurpurea is a traditional mariculture crop having high nutritional value, eicosapntemacnioc acid (EPA) production, and protein content. As an intertidal species, it can tolerate drastic changes in abiotic factors such as temperature, hydration, and light radiation; however, genomic information on the evolutionary aspect and mechanism of EPA enrichment in B. fuscopurpurea and the role of EPA in cold tolerance in this species remain elusive. We conducted transcriptome profile analysis in B. fuscopurpurea to investigate the biological functions of genes associated with resistance to various environment factors. We identified 41,935 unigenes that were assembled and applied to public databases to define their functional annotation (NR, GO, KEGG, KOG, and SwissProt). We further identified genes that encoded key enzymes in EPA biosynthesis; five paralogous genes encoding delta5 desaturase were detected in B. fuscopurpurea. Fatty acid profiling and gene expression analysis of B. fuscopurpurea grown under cold stress were simultaneously performed. The EPA content was increased by 29.8% in the samples grown at 4°C, while the total amount of fatty acids remained unchanged. Moreover, all the EPA biosynthesis-related desaturase and elongase genes were upregulated under cold stress. Thus, we hypothesized that diverse EPA biosynthesis pathways and significant increase in gene copy numbers of fatty acid desaturases, together with the concomitant elevation in the transcriptional level of genes associated with fatty acid metabolism, lead to EPA accumulation and subsequently affect membrane fluidity, contributing to cold stress resistance in B. fuscopurpurea. Our findings not only provide a fundamental genetic background for further research in B. fuscopurpurea, but also have important implications for screening and genetic engineering of algae and plants for EPA production.


Assuntos
Temperatura Baixa , Ácido Eicosapentaenoico/biossíntese , Metabolômica , Alga Marinha/fisiologia , Transcriptoma , Ácidos Graxos/metabolismo , Genes de Plantas , Filogenia , Alga Marinha/genética , Alga Marinha/metabolismo
15.
Mar Biotechnol (NY) ; 19(2): 147-156, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28233074

RESUMO

Pyropia yezoensis, belonging to the Rhodophyta, is an economically important seaweed. In this study, we developed a high-efficiency plastid transformation platform for P. yezoensis. In the plastid transformation vector, psbA UTR of P. yezoensis, including the promoter and 3' UTR, was used to express foreign genes. The integration site was a transcriptionally active intergenic region between the rrsB and trnI genes, located in the inverted repeat regions of the plastid genome. The CAT and eGFP genes were integrated into the plastid genome at this site. The expression of CAT in the transformants confers resistance to chloramphenicol through the action of chloramphenicol acetyltransferase, which inactivates the drug, thereby allowing the plant to grow well under selective pressure. The eGFP fluorescence signal was also observed in transformed cells and the transformants. The average survival rate of treated cells was estimated to be approximately 4.2‰ (4 transplastomic colonies per 1000 gametophyte cells). Multiple-PCR analyses confirmed that the CAT and eGFP genes were successfully integrated in the site between rrsB and trnI. Western blot also showed eGFP expression in the cells of transformants. Thus, this study presents the first convenient plastid gene expression system for P. yezoensis and provides an important platform for studying gene function in P. yezoensis.


Assuntos
Plastídeos/genética , Rodófitas/genética , Alga Marinha/genética , Transformação Genética , DNA Intergênico , Vetores Genéticos , Plantas Geneticamente Modificadas/genética
16.
J Integr Plant Biol ; 58(10): 848-858, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26947269

RESUMO

During photosynthesis, photosynthetic electron transport generates a proton motive force (pmf) across the thylakoid membrane, which is used for ATP biosynthesis via ATP synthase in the chloroplast. The pmf is composed of an electric potential (ΔΨ) and an osmotic component (ΔpH). Partitioning between these components in chloroplasts is strictly regulated in response to fluctuating environments. However, our knowledge of the molecular mechanisms that regulate pmf partitioning is limited. Here, we report a bestrophin-like protein (AtBest), which is critical for pmf partitioning. While the ΔpH component was slightly reduced in atbest, the ΔΨ component was much greater in this mutant than in the wild type, resulting in less efficient activation of nonphotochemical quenching (NPQ) upon both illumination and a shift from low light to high light. Although no visible phenotype was observed in the atbest mutant in the greenhouse, this mutant exhibited stronger photoinhibition than the wild type when grown in the field. AtBest belongs to the bestrophin family proteins, which are believed to function as chloride (Cl- ) channels. Thus, our findings reveal an important Cl- channel required for ion transport and homeostasis across the thylakoid membrane in higher plants. These processes are essential for fine-tuning photosynthesis under fluctuating environmental conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tilacoides/metabolismo , Concentração de Íons de Hidrogênio , Fotossíntese/fisiologia , Força Próton-Motriz/fisiologia
17.
J Exp Bot ; 67(3): 775-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26596765

RESUMO

Light regulates plant growth and development via multiple photoreceptors including phytochromes and cryptochromes. Although the functions of photoreceptors have been studied extensively, questions remain regarding the involvement of cryptochromes in photomorphogenesis. In this study, we identified a protein, TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR 2 (TCP2), which interacts with the cryptochrome 1 (CRY1) protein in yeast and plant cells via the N-terminal domains of both proteins. Transgenic plants overexpressing TCP2 displayed a light-dependent short hypocotyl phenotype, especially in response to blue light. Moreover, light affected TCP2 expression in a wavelength-dependent manner and TCP2 positively regulates mRNA expression of HYH and HY5. These results support the hypothesis that TCP2 is a transcription activator which acts downstream of multiple photoreceptors, including CRY1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/metabolismo , Luz , Morfogênese/efeitos da radiação , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Criptocromos/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fenótipo , Células Vegetais/metabolismo , Células Vegetais/efeitos da radiação , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos da radiação , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/genética
18.
BMC Genomics ; 16: 1012, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26611675

RESUMO

BACKGROUND: Pyropia haitanensis is an economically important marine crop grown in harsh intertidal habitats of southern China; it is also an excellent model system for studying mechanisms of stress tolerance. To understand the molecular mechanisms underlying osmotic tolerance and adaptation to intertidal environments, a comprehensive analysis of genome-wide gene expression profiles in response to dehydration and rehydration in Py. haitanensis was undertaken using digital gene expression profile (DGE) approaches combined with de novo transcriptome sequencing. RESULTS: RNA-sequencing of the pooled RNA samples from different developmental phases and stress treatments was performed, which generated a total of 47.7 million clean reads. These reads were de novo assembled into 28,536 unigenes (≥ 200 bp), of which 18,217 unigenes (63.83 %) were annotated in at least one reference database. DGE analysis was performed on four treatments (two biological replicates per treatment), which included moderate dehydration, severe dehydration, rehydration, and normal conditions. The number of raw reads per sample ranged from 12.47 to 15.79 million, with an average of 14.69 million reads per sample. After quality filtering, the number of clean reads per sample ranged from 11.83 to 15.04 million. All distinct sequencing reads were annotated using the transcriptome of Py. haitanensis as reference. A total of 1,681 unigenes showed significant differential expression between moderate dehydration and normal conditions, in which 977 genes were upregulated, and 704 genes were downregulated. Between severe dehydration and normal conditions, 1,993 unigenes showed significantly altered expression, which included both upregulated (1,219) and downregulated genes (774). In addition, 1,086 differentially expressed genes were detected between rehydration and normal conditions, of which 720 genes were upregulated and 366 unigenes were downregulated. Most gene expression patterns in response to dehydration differed from that of rehydration, except for the synthesis of unsaturated fatty acids, several transcription factor families, and molecular chaperones that have been collectively implicated in the processes of dehydration and rehydration in Py. haitanensis. CONCLUSIONS: Taken together, these data provide a global high-resolution analysis of gene expression changes during osmotic stress that could potentially serve as a key resource for understanding the biology of osmotic acclimation in intertidal red seaweed.


Assuntos
Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Pressão Osmótica , Rodófitas/genética , Estudo de Associação Genômica Ampla , Transcriptoma/genética
19.
PLoS One ; 10(9): e0138709, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398216

RESUMO

Micro-ribonucleic acids (miRNAs) are a large group of endogenous, tiny, non-coding RNAs consisting of 19-25 nucleotides that regulate gene expression at either the transcriptional or post-transcriptional level by mediating gene silencing in eukaryotes. They are considered to be important regulators that affect growth, development, and response to various stresses in plants. Alexandrium catenella is an important marine toxic phytoplankton species that can cause harmful algal blooms (HABs). To date, identification and function analysis of miRNAs in A. catenella remain largely unexamined. In this study, high-throughput sequencing was performed on A. catenella to identify and quantitatively profile the repertoire of small RNAs from two different growth phases. A total of 38,092,056 and 32,969,156 raw reads were obtained from the two small RNA libraries, respectively. In total, 88 mature miRNAs belonging to 32 miRNA families were identified. Significant differences were found in the member number, expression level of various families, and expression abundance of each member within a family. A total of 15 potentially novel miRNAs were identified. Comparative profiling showed that 12 known miRNAs exhibited differential expression between the lag phase and the logarithmic phase. Real-time quantitative RT-PCR (qPCR) was performed to confirm the expression of two differentially expressed miRNAs that were one up-regulated novel miRNA (aca-miR-3p-456915), and one down-regulated conserved miRNA (tae-miR159a). The expression trend of the qPCR assay was generally consistent with the deep sequencing result. Target predictions of the 12 differentially expressed miRNAs resulted in 1813 target genes. Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) annotations revealed that some miRNAs were associated with growth and developmental processes of the alga. These results provide insights into the roles that miRNAs play in the growth of A. catenella, and they provide the basis for further studies of the molecular mechanisms that underlie bloom growth in red tides species.


Assuntos
Biologia Computacional , Dinoflagellida/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Dinoflagellida/crescimento & desenvolvimento , Biblioteca Gênica , Estágios do Ciclo de Vida/genética , MicroRNAs/análise , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
20.
BMC Genomics ; 16: 463, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26081586

RESUMO

BACKGROUND: Pyropia yezoensis is a model organism often used to investigate the mechanisms underlying stress tolerance in intertidal zones. The digital gene expression (DGE) approach was used to characterize a genome-wide comparative analysis of differentially expressed genes (DEGs) that influence the physiological, developmental or biochemical processes in samples subjected to 4 treatments: high-temperature stress (HT), chilling stress (CS), freezing stress (FS) and normal temperature (NT). RESULTS: Equal amounts of total RNAs collected from 8 samples (two biological replicates per treatment) were sequenced using the Illumina/Solexa platform. Compared with NT, a total of 2202, 1334 and 592 differentially expressed unigenes were detected in HT, CS and FS respectively. Clustering analysis suggested P. yezoensis acclimates to low and high-temperature stress condition using different mechanisms: In heat stress, the unigenes related to replication and repair of DNA and protein processing in endoplasmic reticulum were active; however at low temperature stresses, unigenes related to carbohydrate metabolism and energy metabolism were active. Analysis of gene differential expression showed that four categories of DEGs functioning as temperature sensors were found, including heat shock proteins, H2A, histone deacetylase complex and transcription factors. Heat stress caused chloroplast genes down-regulated and unigenes encoding metacaspases up-regulated, which is an important regulator of PCD. Cold stress caused an increase in the expression of FAD to improve the proportion of polyunsaturated fatty acids. An up-regulated unigene encoding farnesyl pyrophosphate synthase was found in cold stress, indicating that the plant hormone ABA also played an important role in responding to temperature stress in P. yezoensis. CONCLUSION: The variation of amount of unigenes and different gene expression pattern under different temperature stresses indicated the complicated and diverse regulation mechanism in response to temperature stress in P. yezoensis. Several common metabolism pathways were found both in P. yezoensis and in higher plants, such as FAD in low-temperature stress and HSP in heat stress. Meanwhile, many chloroplast genes and unigene related to the synthesis of abscisic acid were detected, revealing its unique temperature-regulation mechanism in this intertidal species. This sequencing dataset and analysis may serve as a valuable resource to study the mechanisms involved in abiotic stress tolerance in intertidal seaweeds.


Assuntos
Genes de Plantas , Rodófitas/genética , Estresse Fisiológico/genética , Transcriptoma , Cloroplastos/genética , Cloroplastos/metabolismo , Análise por Conglomerados , Ácidos Graxos Insaturados/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA/análise , RNA/isolamento & purificação , Rodófitas/metabolismo , Análise de Sequência de RNA , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...