Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(16): 4524-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27071102

RESUMO

G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR-biased ligands with important implications for drug discovery.


Assuntos
Brônquios/metabolismo , Músculo Liso/metabolismo , Receptor Muscarínico M3/metabolismo , Transdução de Sinais/fisiologia , Animais , Brônquios/citologia , Humanos , Camundongos , Camundongos Knockout , Músculo Liso/citologia , Fosforilação/fisiologia , Receptor Muscarínico M3/genética
2.
FASEB J ; 28(2): 956-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24132623

RESUMO

To clarify the potential utility of targeting GRK2/3-mediated desensitization as a means of manipulating airway smooth muscle (ASM) contractile state, we assessed the specificity of GRK2/3 regulation of procontractile and relaxant G-protein-coupled receptors in ASM. Functional domains of GRK2/3 were stably expressed, or siRNA-mediated GRK2/3 knockdown was performed, in human ASM cultures, and agonist-induced signaling was assessed. Regulation of contraction of murine tracheal rings expressing GRK2 C terminus was also assessed. GRK2/3 knockdown or expression of the GRK2 C terminus caused a significant (∼ 30-90%) increase in maximal ß-agonist and histamine [phosphoinositide (PI) hydrolysis] signaling, without affecting the calculated EC50. GRK2 C-terminal expression did not affect signaling by methacholine, thrombin, or LTD4. Expression of the GRK2 N terminus or kinase-dead holo-GRK2 diminished (∼ 30-70%) both PI hydrolysis and Ca(2+) mobilization by every Gq-coupled receptor examined. Under conditions of GRK2 C-terminal expression, ß-agonist inhibition of methacholine-stimulated PI hydrolysis was greater. Finally, transgenic expression of the GRK2 C terminus in murine ASM enabled ∼ 30-50% greater ß-agonist-mediated relaxation of methacholine-induced contraction. Collectively these data demonstrate the relative selectivity of GRKs for the ß2AR in ASM and the ability to exploit GRK2/3 functional domains to render ASM hyporesponsive to contractile agents while increasing responsiveness to bronchodilating ß-agonist.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo , Músculo Liso/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/química , Quinase 3 de Receptor Acoplado a Proteína G/química , Humanos , RNA Interferente Pequeno , Receptores Acoplados a Proteínas G/metabolismo , Sistema Respiratório/citologia , Transdução de Sinais/fisiologia
3.
Handb Exp Pharmacol ; (208): 79-94, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22222696

RESUMO

It is now well established that G-protein coupled receptors (GPCRs) are hyper-phosphorylated following agonist occupation usually at serine and threonine residues contained on the third intracellular loop and C-terminal tail. After some 2 decades of intensive research, the nature of protein kinases involved in this process together with the signalling consequences of receptor phosphorylation has been firmly established. The major challenge that the field currently faces is placing all this information within a physiological context and determining to what extent does phosphoregulation of GPCRs impact on whole animal responses. In this chapter, we address this issue by describing how GPCR phosphorylation might vary depending on the cell type in which the receptor is expressed and how this might be employed to drive selective regulation of physiological responses.


Assuntos
Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos , Ligantes , Fosforilação , Rodopsina/metabolismo
4.
Commun Integr Biol ; 4(4): 489-91, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21966580

RESUMO

Recently, M(3)-muscarinic receptor (M3R) has been identified as the bona fide receptor responsible for the cholinergic regulation of glucose-induced insulin release. The molecular mechanisms of such regulation have also begun to be unravelled. These include the conventional G protein-dependent pathways involving calcium mobilization and activation of protein kinase C. In addition, recent studies also provided evidence for G protein-independent pathways in the regulation of insulin secretion by M3R. These include phosphorylation/arrestin-dependent activation of protein kinase D1, Src family kinase-dependent activation of the sodium channel NALCN and the involvement of regulator of G protein signaling (RGS)-4. Time has now come to extend these studies which were done mainly in rodents to human and explore the potential for targeting such pathways at different levels for the treatment of diseases with impaired insulin secretion such as type II diabetes.

5.
Methods Mol Biol ; 746: 237-49, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21607860

RESUMO

Phosphorylation of G protein-coupled receptors (GPCRs) is one of the most prominent post-translation modifications mediated by agonist stimulation. This process has been shown to result not only in receptor desensitisation but also, via the recruitment of arrestin adaptor proteins, to promote receptor coupling to numerous signalling pathways. Furthermore, there is now a growing body of evidence suggesting that GPCRs may employ phosphorylation as a mechanism to regulate their cell-type-specific signalling, hence generating tissue-specific functions. These advances have resulted partly from improved methods used in the determination of phospho-acceptor sites on GPCRs and improved analysis of the consequences of phosphorylation. This chapter aims to describe the methods used in our laboratory for the investigation of site-specific phosphorylation of the M3-muscarinic receptor. These methods could easily be applied in the study of other receptors.


Assuntos
Mapeamento de Peptídeos/métodos , Receptores Acoplados a Proteínas G/metabolismo , Anticorpos Fosfo-Específicos/metabolismo , Espectrometria de Massas , Fosforilação
6.
J Biol Chem ; 286(13): 11506-18, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21177246

RESUMO

G-protein-coupled receptors are hyper-phosphorylated in a process that controls receptor coupling to downstream signaling pathways. The pattern of receptor phosphorylation has been proposed to generate a "bar code" that can be varied in a tissue-specific manner to direct physiologically relevant receptor signaling. If such a mechanism existed, receptors would be expected to be phosphorylated in a cell/tissue-specific manner. Using tryptic phosphopeptide maps, mass spectrometry, and phospho-specific antibodies, it was determined here that the prototypical G(q/11)-coupled M(3)-muscarinic receptor was indeed differentially phosphorylated in various cell and tissue types supporting a role for differential receptor phosphorylation in directing tissue-specific signaling. Furthermore, the phosphorylation profile of the M(3)-muscarinic receptor was also dependent on the stimulus. Full and partial agonists to the M(3)-muscarinic receptor were observed to direct phosphorylation preferentially to specific sites. This hitherto unappreciated property of ligands raises the possibility that one mechanism underlying ligand bias/functional selectivity, a process where ligands direct receptors to preferred signaling pathways, may be centered on the capacity of ligands to promote receptor phosphorylation at specific sites.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptor Muscarínico M3/metabolismo , Transdução de Sinais/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Camundongos , Fosforilação/fisiologia , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/genética
7.
Proc Natl Acad Sci U S A ; 107(49): 21181-6, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078968

RESUMO

The activity of G protein-coupled receptors is regulated via hyper-phosphorylation following agonist stimulation. Despite the universal nature of this regulatory process, the physiological impact of receptor phosphorylation remains poorly studied. To address this question, we have generated a knock-in mouse strain that expresses a phosphorylation-deficient mutant of the M(3)-muscarinic receptor, a prototypical G(q/11)-coupled receptor. This mutant mouse strain was used here to investigate the role of M(3)-muscarinic receptor phosphorylation in the regulation of insulin secretion from pancreatic islets. Importantly, the phosphorylation deficient receptor coupled to G(q/11)-signaling pathways but was uncoupled from phosphorylation-dependent processes, such as receptor internalization and ß-arrestin recruitment. The knock-in mice showed impaired glucose tolerance and insulin secretion, indicating that M(3)-muscarinic receptors expressed on pancreatic islets regulate glucose homeostasis via receptor phosphorylation-/arrestin-dependent signaling. The mechanism centers on the activation of protein kinase D1, which operates downstream of the recruitment of ß-arrestin to the phosphorylated M(3)-muscarinic receptor. In conclusion, our findings support the unique concept that M(3)-muscarinic receptor-mediated augmentation of sustained insulin release is largely independent of G protein-coupling but involves phosphorylation-/arrestin-dependent coupling of the receptor to protein kinase D1.


Assuntos
Arrestinas/metabolismo , Insulina/metabolismo , Proteína Quinase C/metabolismo , Receptor Muscarínico M3/fisiologia , Animais , Ativação Enzimática , Glucose , Homeostase , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Mutantes , Fosforilação , Transporte Proteico , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Receptores Acoplados a Proteínas G , Transdução de Sinais , beta-Arrestinas
8.
Proc Natl Acad Sci U S A ; 107(20): 9440-5, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439723

RESUMO

Degeneration of the cholinergic system is considered to be the underlying pathology that results in the cognitive deficit in Alzheimer's disease. This pathology is thought to be linked to a loss of signaling through the cholinergic M(1)-muscarinic receptor subtype. However, recent studies have cast doubt on whether this is the primary receptor mediating cholinergic-hippocampal learning and memory. The current study offers an alternative mechanism involving the M(3)-muscarinic receptor that is expressed in numerous brain regions including the hippocampus. We demonstrate here that M(3)-muscarinic receptor knockout mice show a deficit in fear conditioning learning and memory. The mechanism used by the M(3)-muscarinic receptor in this process involves receptor phosphorylation because a knockin mouse strain expressing a phosphorylation-deficient receptor mutant also shows a deficit in fear conditioning. Consistent with a role for receptor phosphorylation, we demonstrate that the M(3)-muscarinic receptor is phosphorylated in the hippocampus following agonist treatment and following fear conditioning training. Importantly, the phosphorylation-deficient M(3)-muscarinic receptor was coupled normally to G(q/11)-signaling but was uncoupled from phosphorylation-dependent processes such as receptor internalization and arrestin recruitment. It can, therefore, be concluded that M(3)-muscarinic receptor-dependent learning and memory depends, at least in part, on receptor phosphorylation/arrestin signaling. This study opens the potential for biased M(3)-muscarinic receptor ligands that direct phosphorylation/arrestin-dependent (non-G protein) signaling as being beneficial in cognitive disorders.


Assuntos
Doença de Alzheimer/fisiopatologia , Medo , Hipocampo/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Receptor Muscarínico M3/fisiologia , Doença de Alzheimer/metabolismo , Animais , Arrestina/metabolismo , Condicionamento Psicológico , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Espectrometria de Massas , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Fosforilação , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo
9.
J Biol Chem ; 284(25): 17147-17156, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19332541

RESUMO

Changes in synaptic strength mediated by ionotropic glutamate N-methyl-D-asparate (NMDA) receptors is generally considered to be the molecular mechanism underlying memory and learning. NMDA receptors themselves are subject to regulation through signaling pathways that are activated by G-protein-coupled receptors (GPCRs). In this study we investigate the ability of NMDA receptors to regulate the signaling of GPCRs by focusing on the G(q/11)-coupled M(3)-muscarinic receptor expressed endogenously in mouse cerebellar granule neurons. We show that NMDA receptor activation results in the phosphorylation and desensitization of M(3)-muscarinic receptors through a mechanism dependent on NMDA-mediated calcium influx and the activity of calcium-calmodulin-dependent protein kinase II. Our study reveals a complex pattern of regulation where GPCRs (M(3)-muscarinic) and NMDA receptors can feedback on each other in a process that is likely to influence the threshold value of signaling networks involved in synaptic plasticity.


Assuntos
Cerebelo/metabolismo , Receptor Muscarínico M3/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Cerebelo/citologia , Retroalimentação Fisiológica , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , N-Metilaspartato/farmacologia , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatidilinositóis/metabolismo , Fosforilação , Receptor Muscarínico M3/química , Receptor Muscarínico M3/deficiência , Receptor Muscarínico M3/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
10.
Biochemistry ; 47(35): 9279-88, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18690720

RESUMO

Although G protein-coupled receptor (GPCR) kinases (GRKs) have been shown to mediate desensitization of numerous GPCRs in studies using cellular expression systems, their function under physiological conditions is less well understood. In the current study, we employed various strategies to assess the effect of inhibiting endogenous GRK2/3 on signaling and function of endogenously expressed G s-coupled receptors in human airway smooth muscle (ASM) cells. GRK2/3 inhibition by expression of a Gbetagamma sequestrant, a GRK2/3 dominant-negative mutant, or siRNA-mediated knockdown increased intracellular cAMP accumulation mediated via beta-agonist stimulation of the beta-2-adrenergic receptor (beta 2AR). Conversely, neither 5'-( N-ethylcarboxamido)-adenosine (NECA; activating the A2b adenosine receptor) nor prostaglandin E2 (PGE 2; activating EP2 or EP4 receptors)-stimulated cAMP was significantly increased by GRK2/3 inhibition. Selective knockdown using siRNA suggested the majority of PGE 2-stimulated cAMP in ASM was mediated by the EP2 receptor. Although a minor role for EP3 receptors in influencing PGE 2-mediated cAMP was determined, the GRK2/3-resistant nature of EP2 receptor signaling in ASM was confirmed using the EP2-selective agonist butaprost. Somewhat surprisingly, GRK2/3 inhibition did not augment the inhibitory effect of the beta-agonist on mitogen-stimulated increases in ASM growth. These findings demonstrate that with respect to G s-coupled receptors in ASM, GRK2/3 selectively attenuates beta 2AR signaling, yet relief of GRK2/3-dependent beta 2AR desensitization does not influence at least one important physiological function of the receptor.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 3 de Receptor Acoplado a Proteína G/genética , Humanos , Músculo Liso/enzimologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
11.
Trends Pharmacol Sci ; 29(8): 413-20, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18606460

RESUMO

It is now established that most of the approximately 800 G-protein-coupled receptors (GPCRs) are regulated by phosphorylation in a process that results in the recruitment of arrestins, leading to receptor desensitization and the activation of arrestin-dependent processes. This generalized view of GPCR regulation, however, does not provide an adequate mechanism for the control of tissue-specific GPCR signalling. Here, we review the evidence that GPCR phosphorylation is, in fact, a flexible and dynamic regulatory process in which GPCRs are phosphorylated in a unique manner that is associated with the cell type in which the receptor is expressed. In this scenario, phosphorylation offers a mechanism of regulating the signalling outcome of GPCRs that can be tailored to meet a specific physiological role.


Assuntos
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos , Fosforilação
12.
FASEB J ; 20(9): 1558-60, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16723377

RESUMO

Previously we reported that the G protein-coupled receptor (GPCR) agonist thrombin potentiated the mitogenic effect of epidermal growth factor (EGF) on human airway smooth muscle (ASM) by promoting sustained late-phase activation of PI3K and p70S6K via a pathway dependent on Gbetagamma subunits of heterotrimeric G proteins. Here, we provide additional mechanistic insight and reveal the robustness of this phenomenon by demonstrating that H1 histamine and thromboxane receptors utilize the same mechanism to augment ASM growth via specific activation of the heterotrimeric G protein G(q/11). Thrombin, histamine, and U46619 all enhanced EGF-stimulated [3H]-thymidine incorporation as well as late-phase Akt and p70S6K phosphorylation in ASM cultures. Heterologous expression of Gbetagamma sequestrants (GRK2CT-GFP or Galpha(i)G203A), as well as GRK2NT-GFP (an RGS protein for G(q/11)) but neither p115RhoGEFRGS-GFP (an RGS for G(12/13)) nor pertussis toxin pretreatment (inactivating G(i/o)), attenuated the effects on both signaling and growth. Inhibition of Rho, Rho kinase, or Src, or modulation of arrestin expression did not significantly affect the cooperative signaling by EGF and any of the GPCR agonists. Thus, G(q/11)-coupled receptors are the principal GPCR subfamily mediating cooperative mitogenic signaling in ASM, acting through Gbetagamma-dependent, and Src/arrestin-independent activation of PI3K and p70S6K.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Substâncias de Crescimento/fisiologia , Músculo Liso/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Mucosa Respiratória/fisiologia , Transdução de Sinais/fisiologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Histamina/farmacologia , Humanos , Músculo Liso/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Trombina/farmacologia , Vasoconstritores/farmacologia
13.
Biochem J ; 391(Pt 1): 25-32, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15960610

RESUMO

We have shown previously that LPPs (lipid phosphate phosphatases) reduce the stimulation of the p42/p44 MAPK (p42/p44 mitogen-activated protein kinase) pathway by the GPCR (G-protein-coupled receptor) agonists S1P (sphingosine 1-phosphate) and LPA (lysophosphatidic acid) in serum-deprived HEK-293 cells [Alderton, Darroch, Sambi, McKie, Ahmed, N. J. Pyne and S. Pyne (2001) J. Biol. Chem. 276, 13452-13460]. In the present study, we now show that this can be blocked by pretreating HEK-293 cells with the caspase 3/7 inhibitor, Ac-DEVD-CHO [N-acetyl-Asp-Glu-Val-Asp-CHO (aldehyde)]. Therefore LPP2 and LPP3 appear to regulate the apoptotic status of serum-deprived HEK-293 cells. This was supported further by: (i) caspase 3/7-catalysed cleavage of PARP [poly(ADP-ribose) polymerase] was increased in serum-deprived LPP2-overexpressing compared with vector-transfected HEK-293 cells; and (ii) serum-deprived LPP2- and LPP3-overexpressing cells exhibited limited intranucleosomal DNA laddering, which was absent in vector-transfected cells. Moreover, LPP2 reduced basal intracellular phosphatidic acid levels, whereas LPP3 decreased intracellular S1P in serum-deprived HEK-293 cells. LPP2 and LPP3 are constitutively co-localized with SK1 (sphingosine kinase 1) in cytoplasmic vesicles in HEK-293 cells. Moreover, LPP2 but not LPP3 prevents SK1 from being recruited to a perinuclear compartment upon induction of PLD1 (phospholipase D1) in CHO (Chinese-hamster ovary) cells. Taken together, these data are consistent with an important role for LPP2 and LPP3 in regulating an intracellular pool of PA and S1P respectively, that may govern the apoptotic status of the cell upon serum deprivation.


Assuntos
Apoptose/fisiologia , Lisofosfolipídeos/metabolismo , Fosfatidato Fosfatase/metabolismo , Ácidos Fosfatídicos/metabolismo , Esfingosina/análogos & derivados , Animais , Células CHO , Caspase 3 , Caspase 7 , Caspases/metabolismo , Linhagem Celular , Sobrevivência Celular/fisiologia , Cricetinae , Cricetulus , Ativação Enzimática , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Esfingosina/metabolismo
14.
Semin Cell Dev Biol ; 15(5): 491-501, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15271294

RESUMO

The biological actions of the lysolipid agonists sphingosine 1-phosphate and lysophosphatidic acid, in addition to other bioactive lipid phosphates such as phosphatidic acid and ceramide 1-phosphate, can be influenced by a family of lipid phosphate phosphatases (LPP), including LPP1, LPP2, LPP3, the Drosophila homologues Wunen (Wun) and Wunen2 (Wun2) and sphingosine 1-phosphate phosphatases 1 and 2 (SPP1, SPP2). This review describes the characteristic of these enzymes and their potential physiological roles in regulating intracellular and extracellular actions and amounts of these lipids in addition to the involvement of these phosphatases in development.


Assuntos
Lisofosfolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidato Fosfatase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Animais , Humanos , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo
15.
J Biol Chem ; 278(8): 6282-90, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12480944

RESUMO

Platelet-derived growth factor (PDGF) and sphingosine 1-phosphate (S1P) act via PDGF beta receptor-S1P(1) receptor complexes in airway smooth muscle cells to promote mitogenic signaling. Several lines of evidence support this conclusion. First, both receptors were co-immunoprecipitated from cell lysates with specific anti-S1P(1) antibodies, indicating that they form a complex. Second, treatment of airway smooth muscle cells with PDGF stimulated the phosphorylation of p42/p44 MAPK, and this phosphorylated p42/p44 MAPK associates with the PDGF beta receptor-S1P(1) receptor complex. Third, treatment of cells with antisense S1P(1) receptor plasmid construct reduced the PDGF- and S1P-dependent activation of p42/p44 MAPK. Fourth, S1P and/or PDGF induced the formation of endocytic vesicles containing both PDGF beta receptors and S1P(1) receptors, which was required for activation of the p42/p44 MAPK pathway. PDGF does not induce the release of S1P, suggesting the absence of a sequential mechanism. However, sphingosine kinase 1 is constitutively exported from cells and supports activation of p42/p44 MAPK by exogenous sphingosine. Thus, the presentation of sphingosine from other cell types and its conversion to S1P by the kinase exported from airway smooth muscle cells might enable S1P to act with PDGF on the PDGF beta receptor-S1P(1) receptor complex to induce biological responses in vivo. These data provide further evidence for a novel mechanism for G-protein-coupled receptor and receptor tyrosine kinase signal integration that is distinct from the transactivation of receptor tyrosine kinases by G-protein-coupled receptor agonists and/or sequential release and action of S1P in response to PDGF.


Assuntos
Lisofosfolipídeos , Músculo Liso/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/fisiologia , Receptores de Superfície Celular/fisiologia , Receptores Acoplados a Proteínas G , Esfingosina/análogos & derivados , Esfingosina/fisiologia , Animais , Células Cultivadas , Cobaias , Cinética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso/efeitos dos fármacos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/efeitos dos fármacos , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Lisofosfolipídeos , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Fenômenos Fisiológicos Respiratórios , Esfingosina/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...