Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; 20(5): e2304452, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752683

RESUMO

Carbon-based hole transport layer-free perovskite solar cells (PSCs) based on methylammonium lead triiodide (MAPbI3 ) have become one of the research focus due to low cost, easy preparation, and good optoelectronic properties. However, instability of perovskite under vacancy defects and stress-strain makes it difficult to achieve high-efficiency and stable power output. Here, a soft-structured long-chain 2D pentanamine iodide (abbreviated as "PI") is used to improve perovskite quality and interfacial mechanical compatibility. PI containing CH3 (CH2 )4 NH3 + and I- ions not only passivate defects at grain boundaries, but also effectively alleviate residual stress during high temperature annealing via decreasing Young's modulus of perovskite film. Most importantly, PI effectively increases matching degree of Young's modulus between MAPbI3 (47.1 GPa) and carbon (6.7 GPa), and strengthens adhesive fracture energy (Gc ) between perovskite and carbon, which is helpful for outward release of nascent interfacial stress generated under service conditions. Consequently, photoelectric conversion efficiency (PCE) of optimal device is enhanced from 10.85% to 13.76% and operational stability is also significantly improved. 83.1% output is maintained after aging for 720 h at room temperature and 25-60% relative humidity (RH). This strategy of regulation from chemistry and physics provides a strategy for efficient and stable carbon-based PSCs.

2.
Small ; 19(45): e2302788, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431201

RESUMO

Prussian blue analogs are well suited for sodium-ion battery cathode materials due to their cheap cost and high theoretical specific capacity. Nax CoFe(CN)6 (CoHCF), one of the PBAs, has poor rate performance and cycling stability, while Nax FeFe(CN)6 (FeHCF) has better rate and cycling performance. The CoHCF@FeHCF core-shell structure is designed with CoHCF as the core material and FeHCF as the shell material to enhance the electrochemical properties. The successfully prepared core-shell structure leads to a significant improvement in the rate performance and cycling stability of the composite compared to the unmodified CoHCF. The composite sample of core-shell structure has a specific capacity of 54.8 mAh g-1 at high magnification of 20 C (1 C = 170 mA g-1 ). In terms of cycle stability, it has a capacity retention rate of 84.1% for 100 cycles at 1 C, and a capacity retention rate of 82.7% for 200 cycles at 5 C. Kinetic analysis shows that the composite sample with the core-shell structure has fast kinetic characteristics, and the surface capacitance occupation ratio and sodium-ion diffusion coefficient are higher than those of the unmodified CoHCF.

3.
Phys Chem Chem Phys ; 25(25): 16718-16726, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37283540

RESUMO

Researchers mainly explore the mechanism of pseudocapacitance through studying electrode materials with Faraday pseudocapacitive behavior. Here, we found that Bi2WO6, a typical Aurivillius phase material with pseudo-perovskite structure, showed nearly ideal pseudocapacitive behavior. The cyclic voltammetry curve is approximately rectangular in shape, with no redox peaks, which is similar to that of carbon materials. And the shape of the galvanostatic charge-discharge curve is close to an isosceles triangle. In addition, the kinetic analysis demonstrated that the electrochemical process of the A-Bi2WO6 electrode is dominated by surface processes, not diffusion. The A-Bi2WO6 electrode material presents a great volumetric specific capacitance of 466.5 F cm-3 at 0.5 A g-1. These electrochemical properties confirm that the Bi2WO6 material can serve as an ideal support material to explore pseudocapacitive energy storage. This work also provides guidance for the development of new pseudocapacitive materials.

4.
Chem Asian J ; 18(6): e202201283, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36782100

RESUMO

Herein, CoF2 was synthesized by a solvothermal method. The characterization results of the phase and morphology of the sample show that it was successfully synthesized and its morphology is composed of micron particles with uneven size and shape. The electrochemical test results of SCs in different electrolytes show that CoF2 has electrochemical activity only in alkaline electrolytes. Notably, the electrochemical behavior of CoF2 in LiOH solution is different from that in other alkaline solutions in that charge-discharge curve has a quasi-isosceles triangle shape and the CV curve has no obvious redox peak. That is, it has pseudocapacitance behavior in LiOH. Furthermore, CoF2 as catalyst for HER requires an overpotential of only 168 mV to obtain current density of 10 mA cm-2 and a Tafel slope of 116 mV dec-1 in 1 M KOH solution. This research provides a novel way to explore excellent performance electrode materials for SC and HER.

5.
Small ; 18(39): e2202792, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36038360

RESUMO

The portable power bank as an energy storage device has received tremendous attention while the limited capacity and periodical charging are critical issues. Here, a self-charging power system (SCPS) consisting of a 0.94(Bi0.5 Na0.5 )TiO3 -0.06Ba(Zr0.25 Ti0.75 )O3 /polyvinylidenefluoride (BNT-BZT/PVDF) composite film-based triboelectric nanogenerator (TENG) is designed as a wind energy harvester and an all-solid-state lithium-ion battery (ASSLIB) as the energy storage device. The optimized TENG can provide an output voltage of ≈400 V, a current of ≈45 µA, and a maximum power of ≈10.65 mW, respectively. The ASSLIB assembled by LiNiCoMnO2 as the cathode, NiCo2 S4 as the anode, and Li7 La3 Zr2 O12 as the solid electrolyte can maintain a discharge capacity of 51.3 µAh after 200 cycles with a Coulombic efficiency of 98.5%. Particularly, an ASSLIB can be easily charged up to 3.8 V in 58 min using the wind-driven TENG, which can continuously drive 12 parallel-connected white light-emitting diodes (LEDs) or a pH meter. This work demonstrates the development of low-cost, high-performance and high-safety SCPSs and their large-scale practical application in self-powered microelectronic devices.

6.
Exp Ther Med ; 24(2): 522, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35837038

RESUMO

Hepatitis C virus (HCV) establishes a persistent infection in most patients, eventually leading to chronic hepatitis C (CHC), cirrhosis and hepatocellular carcinoma. Our previous study revealed that HCV core protein (HCVc) inhibited the differentiation of monocytes into M1 and M2 macrophages. However, it remains unclear as to whether HCVc affects the polarization of M2 macrophages, and if this effect promotes the progression of chronic disease. In the present study, peripheral blood mononuclear cells (PBMCs) from patients with CHC and healthy controls (HCs) were isolated, purified and polarized to M2a, M2b and M2c macrophages. Phenotypic expression, cytokine secretion and gene expression were analyzed using flow cytometry, ELISA and reverse transcription-quantitative polymerase chain reaction, respectively. Monocytes from HCs were cultured with HCVc to study the effect of HCVc on macrophage polarization. Plasma alanine transaminase and HCV-RNA levels were significantly higher, and albumin levels were significantly lower in the CHC group than those in the control group (P<0.05). M2a macrophages polarized from monocytes of patients with CHC expressed lower levels of CD209, IL-1 receptor antagonist (IL-1RA) and Fizz1 compared with those from HCs. M2b macrophages expressed lower levels of CD86 and TNF-α, and M2c macrophages expressed lower levels of CD163, TGF-ß and sphingosine kinase 1 (SPHK1) in the CHC group compared with HCs (P<0.05). HCVc inhibited the expression levels of CD209, IL-1RA and Fizz1 in M2a macrophages; CD86 and TNF-α in M2b macrophages; and CD163, TGF-ß and SPHK1 in M2c macrophages (P<0.05). HCVc significantly suppressed phagocytosis of all subtypes (P<0.05); however, this inhibition was restored by an anti-Toll-like receptor (TLR)2 antibody (P<0.05). In conclusion, HCVc inhibited monocyte-derived M2a, M2b and M2c subtype differentiation via the TLR2 signaling pathway, resulting in macrophages exhibiting reduced phagocytosis in patients with CHC. This may contribute to persistent HCV infection, thus suggesting that the blockade of HCVc may be a new therapeutic approach for the treatment of HCV infection.

7.
Sci Rep ; 12(1): 6696, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461322

RESUMO

Oxygen reduction reaction (ORR) electrocatalysts, which are highly efficient, low-cost, yet durable, are important for secondary Zn-air cell applications. ORR activities of single and mixed metal oxide and carbon electrocatalysts were studied using rotating disc electrode (RDE) measurements, Tafel slope and Koutecky-Levich plots. It was found that MnOx combined with XC-72R demonstrated high ORR activity and good stability-up to 100 mA cm-2. The performance of the selected ORR electrode and a previously optimised oxygen evolution reaction (OER) electrode was thereafter tested in a custom-built secondary Zn-air cell in a tri-electrode configuration, and the effects of current density, electrolyte molarity, temperature, and oxygen purity on the performance of the ORR and OER electrode were investigated. Finally, the durability of the secondary Zn-air system was assessed, demonstrating energy efficiencies of 58-61% at 20 mA cm-2 over 40 h in 4 M NaOH + 0.3 M ZnO at 333 K.

8.
Adv Atmos Sci ; 39(3): 403-414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35079193

RESUMO

China experienced worsening ground-level ozone (O3) pollution from 2013 to 2019. In this study, meteorological parameters, including surface temperature (T 2 ), solar radiation (SW), and wind speed (WS), were classified into two aspects, (1) Photochemical Reaction Condition (PRC = T 2 × SW) and (2) Physical Dispersion Capacity (PDC = WS). In this way, a Meteorology Synthetic Index (MSI = PRC/PDC) was developed for the quantification of meteorology-induced ground-level O3 pollution. The positive linear relationship between the 90th percentile of MDA8 (maximum daily 8-h average) O3 concentration and MSI determined that the contribution of meteorological changes to ground-level O-3 varied on a latitudinal gradient, decreasing from ∼40% in southern China to 10%-20% in northern China. Favorable photochemical reaction conditions were more important for ground-level O3 pollution. This study proposes a universally applicable index for fast diagnosis of meteorological roles in ground-level O3 variability, which enables the assessment of the observed effects of precursor emissions reductions that can be used for designing future control policies. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at 10.1007/s00376-021-1257-x.

9.
J Colloid Interface Sci ; 612: 267-276, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998189

RESUMO

MXenes are the typical ions insertion-type two-dimensional (2D) nanomaterials, have attracted extensive attention in the Li+ storage field. However, the self-stacking of layered structure and the consumption of electrolyte during the process of charge/discharge will limit the Li+ diffusion dynamics, rate capability and capacity of MXenes. Herein, a Co atom protection layers with electrochemical nonreactivity were anchored on/in the surface/interlayer of titanium carbide (Ti3C2) by in-situ thermal anchoring (x-Co/m-Ti3C2, x  = 45, 65 and 85), which can not only avoid the self-stacking and expand the interlayer spacing of Ti3C2 but also reduce the consumption of Li+ and electrolyte by forming the thin solid electrolyte interphase (SEI) film. The interlayer spacing of Ti3C2 can be expanded from 0.98 to 1.21, 1.36 and 1.33 nm when the anchoring temperatures are 45, 65 and 85 °C due to the pillaring effects of Co atom layers, in where the 65-Co/m-Ti3C2 can achieve the best specific capacity and rate capability attributed to its superior diffusion coefficient of 8.8 × 10-7 cm2 s-1 in Li+ storage process. Furthermore, the 45, 65 and 85-Co/m-Ti3C2 exhibit lower SEI resistances (RSEI) as 1.45 ± 0.01, 1.26 ± 0.01 and 1.83 ± 0.01 Ω compared with the RSEI of Ti3C2 (5.18 ± 0.01 Ω), suggesting the x-Co/m-Ti3C2 demonstrates a thin SEI film due to the protection of Co atom layers. The findings propose a Co atom protection layers with electrochemical nonreactivity, not only giving an approach to expand the interlayer spacing, but also providing a protection strategy for 2D nanomaterials.

10.
Chem Asian J ; 16(24): 4130-4136, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34699116

RESUMO

Here, we report a two-phase crystalline NiWO4 /amorphous Co-B nanocomposite as an electrode material for supercapacitors, which is effectively synthesized via a simple hydrothermal method and chemical precipitation method. The obtained NiWO4 /Co-B exhibits crystal-amorphous contact, which makes it have more active sites than other crystalline-crystalline phase boundaries, thereby enhancing electron transport. The NiWO4 /Co-B electrode with the best mass ratio of crystalline and amorphous exhibits a great specific capacitance and excellent cycle durability. Compared to individual Co-B and NiWO4 , it also shows enhanced rate capability Besides, NiWO4 /Co-B/activated carbon supercapacitor device can provide a good specific capacitance and a maximum energy density of 10.92 Wh kg-1 at 200 W kg-1 . This work provides new insights to develop novel electrode materials for energy storage and conversion.

11.
Dalton Trans ; 50(30): 10471-10481, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34259285

RESUMO

In our study, a simple method was employed to prepare ultra-micropore-dominated carbon materials with controllable pore size. A mass of heteroatoms was introduced by surface functional group grafting, resulting in enhanced electrochemical performance: the maximum specific capacity of 327.5 F g-1 was obtained at 0.5 A g-1 in 6 M KOH, while that of un-grafted original ultra-microporous carbon was only 188 F g-1, with long-term cycle stability (90.5% of the initial after 10 000 cycles), and excellent rate performance (over 82% at the current density from 0.5 A g-1 to 10 A g-1). The mechanism behind the improved performance was due to the presence of the introduced functional groups that improved the surface wettability of the material and provided additional redox active sites. Their synergistic effects promoted the enhanced electrochemical performance of the ultra-microporous carbon. This study provides a basis for the study of the energy storage mechanism of ultra-microporous carbon and the grafted modification of carbon materials with heteroatom-containing functional groups.

12.
Sci Total Environ ; 783: 146976, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33866162

RESUMO

An aerosol mass spectrometer (AMS) was used to measure the chemical composition of non-refractory submicron particles (NR-PM1) in Beijing from 2012 to 2013. The average concentration of NR-PM1 was 56 µg·m-3, with higher value of 106 µg·m-3 when Beijing was influenced by air masses from south in winter. Organics was the primary chemical component with a concentration of 26 µg·m-3, accounting for 46% of the total NR-PM1. The ratio of NO3-/SO42- was utilized to identify the relative contribution of stationary and traffic related resource to PM pollution. When NR-PM1 concentration was between 50 and 200 µg·m-3, NO3-/SO42-was larger than 1, indicating traffic resource contributed more than stationary resource during the aerosol growth. A new method was developed to calculate aerosol extinction coefficient (σ) as a function of aerosol optical depth (AOD) and the mixing layer height (MLH). σ derived from the new method showed a statistically significant correlation with that obtained from traditional method, which was calculated using visibility (y = 0.99x + 85 R2 = 0.69). Multiple linear regressions in dependence of chemical component were performed to evaluate light extinction apportionment. Under the overall condition, NR-PM1 contributed about 88% to the whole aerosol light extinction; organics, ammonium chloride, ammonium nitrate, ammonium sulfate, black carbon contributed 30%, 6%, 24%, 26% and 6% of the NR-PM1 light extinction, respectively. By further comparing the light extinction apportionment under the different dominated air masses, we concluded that the organics and ammonium sulfate contributed more in polluted days (36% and 23%) than that in clean days (21% and 21%). Mass ratio (MR) between NR-PM1 and black carbon (MR = massNR-PM1/massBC) was used to identify black carbon aging degree, and the result showed that aerosol mass extinction efficiency increased rapidly after MR reached about 7 in the process of black carbon aging.

13.
J Colloid Interface Sci ; 598: 283-301, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901853

RESUMO

Lithium-ion capacitors (LICs) are emerging as one of the most advanced energy storage devices by combining the virtues of both supercapacitors (SCs) and lithium-ion batteries (LIBs). However, the kinetic and capacity mismatch between anode and cathode is the main obstacle to wide applications of LICs. Therefore, the effective strategy of constructing a high-performance LIC is to improve the rate and cycle performance of the anode and the specific capacity of the cathode. Herein, the nickel cobalt phosphate (NiCoP) microspheres anode is demonstrated with robust structural integrity, high electrical conductivity, and fast kinetic feature. Simultaneously, the watermelon-peel biomass-derived carbon (WPBC) cathode is demonstrated a sustainable synthesis strategy with high specific capacity. As expected, the NiCoP exhibits high specific capacities (567 mAh g-1 at 0.1 A g-1), superior rate performance (300 mAh g-1 at 1A g-1), and excellent cycle stability (58 mAh g-1 at 5 A g-1 after 15,000 cycles). The WPBC possesses a high specific surface area (SSA) of 3303.6 m2 g-1 and a high specific capacity of 226 mAh g-1 at 0.1 A g-1. Encouragingly, the NiCoP//WPBC-6 LIC device can deliver high energy density (ED) of 127.4 ± 3.3 and 67 ± 3.8Wh kg-1 at power density (PD) of 190 and 18240 W kg-1 (76.4% capacity retention after 7000 cycles), respectively.

14.
ACS Appl Mater Interfaces ; 13(8): 10071-10088, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617222

RESUMO

The paramount focus in the construction of lithium-ion capacitors (LICs) is the development of anode materials with high reversible capacity and fast kinetics to overcome the mismatch of kinetics and capacity between the anode and cathode. Herein, a strategy is presented for the controllable synthesis of cobalt-based phosphides with various morphologies by adjusting the time of the phosphidation process, including 3D hierarchical needle-stacked diabolo-shaped CoP nanorods, 3D hierarchical stick-stacked diabolo-shaped Co2P nanorods, and 3D hierarchical heterostructure CoP@Co2P nanorods. 3D hierarchical nanostructures and a highly conductive project to accommodate volume changes are rational designs to achieve a robust construction, effective electron-ion transportation, and rapid kinetics characteristics, thus leading to excellent cycling stability and rate performance. Owing to these merits, the 3D hierarchical CoP, Co2P, and CoP@Co2P nanorods demonstrate prominent specific capacities of 573, 609, and 621 mA h g-1 at 0.1 A g-1 over 300 cycles, respectively. In addition, a high-performance CoP@Co2P//AC LIC is successfully constructed, which can achieve high energy densities of 166.2 and 36 W h kg-1 at power densities of 175 and 17524 W kg-1 (83.7% capacity retention after 12000 cycles). Therefore, the controllable synthesis of various simultaneously constructed crystalline phases and morphologies can be used to fabricate other advanced energy storage devices.

15.
Sci Rep ; 10(1): 9157, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514011

RESUMO

The high cost and platinum dissolution issues of counter electrodes (CEs) are two core problems for the development of dye-sensitized solar cells (DSSCs). In this work, different CEs based on binary alloy Ru81.09Co18.91, Ru80.55Se19.45 and Co20.85Se79.15 nanostructures for DSSCs were successfully synthesized and investigated by a facile and environmentally friendly approach. Here, we found that the Co20.85Se79.15 alloy CE-based device yields the higher photoelectric conversion efficiency of 7.08% compared with that (5.80%) of the DSSC using a pure Pt CE because of the larger number of active sites with improved charge transferability and reduced interface resistance by matching work function with the I3‒/I‒ redox electrolyte. The inexpensive synthesis method, cost-effectiveness and superior catalytic activity of the Co20.85Se79.15 alloy may open up a new avenue for the development of CEs for DSSCs in the near future.

16.
ACS Appl Mater Interfaces ; 12(26): 29404-29413, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32496038

RESUMO

Highly efficient redox reaction of active electrode materials is the guarantee for achieving high energy density for energy storage devices. Here, we design a triangle of the electrode material involving the P-N junction between NiO (p-type) and MoO3 (n-type) and electron trajectory deviation between gold nanoparticles with NiO or MoO3. This optimized fundamental triangle structure could facilitate the redox reaction of a metal oxide, and thus the fabricated ternary nanocomposites exhibit excellent electrochemical performance. At a lower current density (0.5 A g-1), the mass specific capacitance of a single electrode can reach 943.3 F g-1, while the NiO/MoO3 tested under the same conditions only has a specific capacitance of 278.9 F g-1. The assembled asymmetric device with activated carbon shows a higher capacitance retention rate of 98.7% after long-term cycling under different current densities, and a maximum energy density of 28.9 W h kg-1 (power density of 400.1 W kg-1). The crucial prerequisite of this strategy is the lower work function of gold nanoparticles compared with active materials, which significantly reduce the activation energy of NiO/MoO3 and the formed P-N junction between p-type NiO with n-type MoO3 in their contact interfaces. This novel design of a triangle structure could be expected to be applied in other materials to develop a kind of energy storage device with excellent electrochemical performance.

17.
J Colloid Interface Sci ; 575: 42-53, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353661

RESUMO

Metal sulfide is the most promising anode material for sodium storage devices due to its high theoretical capacity and low cost. However, the practical application of metal sulfide is largely hindered by huge capacity fading during the sodiation/desodiation process. Here mixed bimetallic sulfides grown on reduced graphene oxide (MoS2/CoS2-RGO) are prepared via a facile hydrothermal method. MoS2/CoS2-RGO displays a unique 2D structure which provides large specific surface area for pseudocapacitive charge storage, polyvalent ion reaction for ultrahigh capacity, and a heterostructure to high Na-ion diffusion rate. The optimized MoS2/CoS2-RGO shows a considerable reversible capacity of 593.6 mA h g-1 at 100 mA g-1 over 50 cycles and a high rate capability of 215.8 mA h g-1 even at a high specific current of 5000 mA g-1. A reaction kinetics and galvanostatic intermittent titration technique analysis indicates that MoS2/CoS2-RGO possesses fast pseudocapacitive charge storage and high Na-ion diffusion rate, benefiting the kinetics balance between anode and cathode. With this special structure, SICs containing the anode deliver a high specific energy of 152.98 W h kg-1 at 562.5 W kg-1. Similarly, the SIB exhibits a good capacities of 64 mA h g-1 at the high rates of 5C over 100 cycles.

18.
J Colloid Interface Sci ; 565: 388-399, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981848

RESUMO

Binary transition metal oxides have received extensive attention because of their multiple oxidation states. However, due to the inherent vices of poor electronic/ionic conductivities, their practical performance as supercapacitor material is limited. Herein, a cobalt molybdate/cobalt boride (CoMoO4/Co-B) composite is constructed with cobalt boride nanoflake-like as a conductive additive in CoMoO4 nanorods using a facile water bath deposition process and liquid-phase reduction method. The effects of CoMoO4/Co-B mass ratios on its electrochemical performance are investigated. Remarkably, the CoMoO4/Co-B composite obtained at a mass ratio of 2:1 shows highly enhanced electrochemical performance relative to those obtained at other ratios and exhibits an optimum specific capacity of 436 F g-1 at 0.5 A g-1. This kind of composite could also display great rate capacity (294 F g-1 at 10 A g-1) and outstanding long cycle performance (90.5% capacitance retention over 10 000 cycles at 5 A g-1). Also, the asymmetric supercapacitor device is prepared by using CoMoO4/Co-B composite as the anode with the active carbon as the cathode. Such a device demonstrates an outstanding energy density of 23.18 Wh kg-1 and superior long-term stability with 100% initial specific capacity retained after 10,000 cycles. The superior electrochemical properties show that the CoMoO4/Co-B electrode material has tremendous potential in energy storage equipment applications.

19.
ACS Appl Mater Interfaces ; 12(3): 3709-3718, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31860261

RESUMO

Lithium-ion capacitors possess excellent power and energy densities, and they can combine both of those advantages from supercapacitors and lithium-ion batteries, leading to novel generation hybrid devices for storing energy. This study synthesized one three-dimensional (3D) hierarchical structure, self-assembled from CoS nanosheets, according to a simple and efficient manner, and can be used as an anode for lithium ion capacitors. This CoS anode, based on a conversion-type Li+ storage mechanism dominated by diffusion control, showed a large reversible capacity, together with excellent stability for cycling. The CoS shows a discharge capacity ≈434 mA h/g at 0.1 A/g. The hybrid lithium-ion capacitor, which had the CoS anode as well as the biochar cathode, exhibits excellent electrochemical performance with ultrahigh energy and power densities of 125.2 Wh/kg and 6400 W/kg, respectively, and an extended cycling life of 81.75% retention after 40 000 cycles. The CoS with self-assembled 3D hierarchical structure in combination with a carbon cathode offers a versatile device for future applications in energy storage.

20.
ACS Omega ; 4(4): 6637-6646, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459789

RESUMO

A concise and environmentally friendly route for the synthesis of diverse indenodihydropyridines (3) via a cascade reaction of 1,1-eneamines (1) with benzylidene-1H-indene-1,3(2H)-diones (BIDs) (2) in ethanol media was developed. The targeted compounds were efficiently obtained by only filtration without any further post-treatment. In the one-step cascade reaction, C-C and C-N bonds were constructed. In addition, when 1,4-dioxane was used as a solvent and the mixture of 1,1-eneamines (1) was refluxed with benzylidene-1H-indene-1,3(2H)-diones (BIDs) (2) for about 12 h, indenopyridine compounds (4) were produced. Two kinds of indenopyridine derivatives 3-4 resulted from alternative solvents and temperatures. The reaction had the following features: mild temperature, atom economy, high yields, and potential biological activity of the product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...