Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 378: 114802, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679280

RESUMO

Pyroptosis signifies a significant form of programmed neuronal demise subsequent to ischemic stroke. In our prior investigations, we demonstrated that the Elabela (ELA)-Apelin receptor (APJ) axis alleviated neuronal death by improving collateral circulation and mitigating ferroptosis in a murine model of middle cerebral artery occlusion (MCAO). However, the connection between ELA and neuronal pyroptosis remains further elucidation. Here, we observed an upregulation of ELA and APJ expression in both murine brain specimens and cultured HT-22 hippocampal neurons exposed to experimental ischemic stroke. ELA administration markedly diminished the infarct size in comparison to controls. ELA treatment ameliorated neurological deficits and anxiety-like symptoms in mice with stroke, concurrently inhibiting pyroptosis and mitochondria fission in neurons. Conversely, ELA knockdown yielded the opposite effects. Utilizing RNA-sequencing analysis, we identified a candidate for pyroptosis priming, Z-DNA-binding protein 1 (ZBP1), which was suppressed in ELA-treated HT-22 neurons during oxygen-glucose deprivation/reperfusion (OGD/R). Subsequent co-immunoprecipitation analyses demonstrated the binding between APJ and ZBP1. Specifically, APJ suppressed ZBP1 to inhibit NLRP3 inflammasome activation and dynamin-related protein 1-mediated mitochondrial fission in neurons. In summary, our findings suggest that ELA functions as a stroke-induced signal limiting neuronal pyroptosis and mitochondrial fission via APJ/ZBP1 signaling, thereby underscoring ELA as a potential therapeutic target for ischemic stroke treatment.


Assuntos
AVC Isquêmico , Dinâmica Mitocondrial , Neurônios , Piroptose , Transdução de Sinais , Animais , Masculino , Camundongos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/fisiologia , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Piroptose/fisiologia , Piroptose/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/fisiologia
2.
Food Chem ; 446: 138872, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442680

RESUMO

Developing sensitive and accurate Ochratoxin A (OTA) detection methods is essential for food safety. Herein, a simple and reliable strategy for regulating interenzyme distance based on a rigid DNA quadrangular prism as a scaffold was proposed to establish a new electrochemical biosensor for ultrasensitive detection of OTA. The interenzyme distances were precisely adjusted by changing the sequences of the hybridized portions of hairpins SH1 and SH2 to the DNA quadrangular prism, avoiding the complexity and instability of the previous DNA scaffold-based enzyme spacing adjustment strategies. The electrochemical biosensor constructed at the optimal interenzyme distance (10.4 nm) achieved sensitive detection of OTA in a dynamic concentration range from 10 fg/mL to 250 ng/mL with a detection limit of 3.1 fg/mL. In addition, the biosensor was applied to quantify OTA in real samples, exhibiting great application potential in food safety.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ocratoxinas , DNA , Ocratoxinas/análise , Técnicas Biossensoriais/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos
3.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260579

RESUMO

Long interspersed element type 1 (LINE-1, L1) is an active autonomous transposable element (TE) in the human genome. The first step of L1 replication is transcription, which is controlled by an internal RNA polymerase II promoter in the 5' untranslated region (UTR) of a full-length L1. It has been shown that transcription factor YY1 binds to a conserved sequence motif at the 5' end of the human L1 5'UTR and dictates where transcription initiates but not the level of transcription. Putative YY1-binding motifs have been predicted in the 5'UTRs of two distinct mouse L1 subfamilies, Tf and Gf. Using site-directed mutagenesis, in vitro binding, and gene knockdown assays, we experimentally tested the role of YY1 in mouse L1 transcription. Our results indicate that Tf, but not Gf subfamily, harbors functional YY1-binding sites in its 5'UTR monomers. In contrast to its role in human L1, YY1 functions as a transcriptional activator for the mouse Tf subfamily. Furthermore, YY1-binding motifs are solely responsible for the synergistic interaction between monomers, consistent with a model wherein distant monomers act as enhancers for mouse L1 transcription. The abundance of YY1-binding sites in Tf elements also raise important implications for gene regulation at the genomic level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA