Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 186: 114340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729695

RESUMO

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Assuntos
Etilenos , Embalagem de Alimentos , Frutas , Poliuretanos , Óleo de Soja , Zeína , Etilenos/química , Poliuretanos/química , Embalagem de Alimentos/métodos , Porosidade , Frutas/química , Óleo de Soja/química , Zeína/química , Adsorção , Polímeros/química , Solanum lycopersicum/química , Interações Hidrofóbicas e Hidrofílicas
2.
ACS Appl Mater Interfaces ; 13(7): 8736-8744, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33565848

RESUMO

Integrating nanostructured active materials, antimicrobial components, and rational porous structures is one of the promising approaches for simultaneously boosting removal efficiency, antimicrobial capacity, mechanical property, hydrophobic performance, and air permeability of air filters. However, realizing these performances of an air filter still remains a big challenge. Herein, a multifunctional air filter zNFs-Ag@PT, which is composed of a unique substrate prepared from Ag nanoparticles (AgNPs)-paper towel (PT) microfibers and an upper layer formed from aligned zein nanofibers (zNFs) inspired by a "tug-of-war" repulsion force, is reported. The Ag@PT substrate is fabricated via in situ reduction; and zNFs are prepared by electrospinning a well-prepared zein Pickering emulsion onto a specially designed collector. The innovative collector is a partially conductive design composed of an insulative middle section and two conductive ends. It is demonstrated that the introduction of AgNPs not only endows the zNFs-Ag@PT filter with an effective antimicrobial activity but also provides the substrate with an anisotropic electric field to achieve stretched and aligned zein fibers forming thinner nanofibers than that without AgNPs. As a result, the filtration performances of a zNFs-Ag@PT filter are enhanced. This study initiates an effective way to fabricate bio-based multifunctional air filters with antimicrobial and filtration performances via combining nano- and biotechnology.

3.
Nanoscale ; 11(39): 18090-18098, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31329205

RESUMO

Endowing separators with the polysulfide-blocking function is urgently needed for high-performance lithium-sulfur (Li-S) batteries. Thus far, most of the reported research has focused on modifying conventional polyolefin separators but with poor thermal stability and low ionic conductivity. To address these issues, herein we report a Janus separator based on a thermally stable polymeric nanofabric designed with abilities to trap polysulfides and facilitate the transport of Li+ simultaneously. This Janus separator possesses a configuration of a carbon nanofiber (CNF) layer toward the sulfur cathode and the polyimide (PI) nanofabric toward the Li metal anode. It is demonstrated that the conductive CNF layer can effectively anchor and convert the polysulfides; meanwhile, the excellent wettability with liquid electrolytes and the highly porous structure of the PI nanofiber layer significantly promote the Li+-transport. In addition, the Janus separator presents notable advantages in thermal dimensional stability benefiting from the PI nanofabric. As a result, the Li-S battery armed with the Janus separator shows a high initial capacity (1393 mA h g-1 at 0.1 A g-1), stable cycling performance (822 mA h g-1 at 1 A g-1) and high coulombic efficiency of 99.6%.

4.
ACS Appl Mater Interfaces ; 11(3): 2978-2988, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30543417

RESUMO

Development of nonflammable separators with excellent properties is in urgent need by next-generation advanced and safe energy storage devices. However, it has been extremely challenging to simultaneously achieve fire resistance, high mechanical strength, good thermomechanical stability, and low ion-transport resistance for polymeric separators. Herein, to address all these needs, we report an in situ formed silica@silica-imbedded polyimide (in situ SiO2@(PI/SiO2)) nanofabric as a new high-performance inorganic-organic hybrid separator. Different from conventional ceramics-modified separators, this in situ SiO2@(PI/SiO2) hybrid separator is realized for the first time via an inverse in situ hydrolysis process. Benefiting from the in situ formed silica nanoshell, the in situ SiO2@(PI/SiO2) hybrid separator shows the highest tensile strength of 42 MPa among all reported nanofiber-based separators, excellent wettability to the electrolyte, good thermomechanical stability at 300 °C, and fire resistance. The LiFePO4 half-cell assembled with this hybrid separator showed a high capacity of 139 mAh·g-1@5C, which is much higher than that of the battery with the pristine PI separator (126.2 mAh·g-1@5C) and Celgard-2400 separator (95.1 mAh·g-1@5C). More importantly, the battery showed excellent cycling stability with no capacity decay over 100 cycles at the high temperature of 120 °C. This study provides a novel method for the fabrication of high-performance and nonflammable polymeric-inorganic hybrid battery separators.

5.
Nanoscale ; 10(47): 22439-22447, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30475381

RESUMO

Herein, we demonstrate a strategy to improve the tensile strength, thermal safety issues, and electrochemical performance of an as-synthesized polyimide separator. By spraying the solution of a specific chemical constituent on both sides of a poly(amic acid) non-woven membrane followed by thermal treatment, a novel polyimide nanofibrous membrane with porous-layer-coated morphology was successfully fabricated by in situ self-bonding and micro-crosslinking technique. The self-bonding and micro-crosslinking techniques improve the tensile strength of the nanofiber membranes from 5 MPa to 28 MPa by forming a crosslinked network structure, thereby reducing the risk of nanofiber disassembly during long-term operation. The rigid structure and aromatic groups in the polyimide chain enable the separator to have outstanding thermal dimensional stability at temperatures as high as 300 °C and thermal stability (5% weight loss at about 528 °C). Additionally, the unique flame retarding capability of polyimide ensures high security of the battery as well. Notably, the lithium-ion battery using porous-layer-coated polyimide separator exhibits a much higher capability (129.9 mA h g-1, 5C) than that using a Celgard-2400 separator (95.2 mA h g-1, 5C) and could work steadily at 120 °C, thus implying promising application in next generation high-safety and high-performance lithium-ion batteries.

6.
Materials (Basel) ; 10(11)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099072

RESUMO

A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...