Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(16): e2105129, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35253963

RESUMO

Single-atom catalysts (SACs) can achieve excellent catalytic efficiency at ultralow catalyst consumptions. Herein, platinum (Pt) atoms are fixed on the wall of atomic layer deposition (ALD)-made molybdenum disulfide nanotube arrays (MoS2 -NTA) for efficient hydrogen evolution reaction (HER). More concretely, MoS2 -NTA with different nanotube diameters and wall thicknesses are fabricated by a sacrificial strategy of anodic aluminum oxide (AAO) template via ALD; then Pt atoms are fixed on the wall of Ti3 C2 -supported MoS2 -NTA as a catalytic system. The MoS2 -NTA/Ti3 C2 decorated with 0.13 wt.% of Pt results in a low overpotential of 32 mV to deliver a current density of 10 mA cm-2 , which is superior to 20 wt.% commercial Pt/C (41 mV). Ordered MoS2 -NTA instead of 2D MoS2 prevents Pt atoms from aggregating and then exerts catalytic activities. The density functional theory calculations suggest that the Pt atoms are more likely to occupy the sites on the tubular MoS2 than the planar MoS2 , and the Pt atoms accumulated at the Mo site of MoS2 -NT have a moderate Gibbs free energy (close to zero).

2.
ACS Appl Mater Interfaces ; 14(8): 10081-10091, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175026

RESUMO

As a member of the two-dimensional transition metal dichalcogenide family, rhenium disulfide (ReS2) is a highly competitive favorite in the field of photoelectric sensors. Nevertheless, the rapid recombination of electron-hole pairs and poor electronic transmission capacity of pure ReS2 limit its wider applications. As a new attempt to optimize its inherent structure and challenge its competency boundary, in this work, a bimetallic co-chamber feeding atomic layer deposition with a precise dose regulation strategy has been used to fabricate ReS2 nanotubes (ReS2-NTs) and MoS2-ReS2 heterojunction nanotubes (MoS2-ReS2-HNTs) based on the anodic aluminum oxide template sacrifice method for the first time. These obtained NTs have at least two advantages: they have a controllable diameter (40-500 nm), definite wall thickness (1 layer to 10 layers), and desirable Mo-to-Re ratio (0 to 90%), and their electron-transfer capacity and photocurrent response can be effectively enhanced by the incorporated Mo atoms. Further experiments indicated that MoS2-ReS2-HNTs with a real Mo-to-Re ratio of 31.0% exhibits the best photocurrent response performance, by which the ultrasensitive detection of cancer-related miRNA-155 with a linear range of 10 aM to 1 nM and a detection limit of 1.8 aM is achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...