Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526923

RESUMO

Arbuscular mycorrhizal fungi (AMF) have been shown to play an important role in increasing plant fitness in harsh conditions. Therefore, AMF are currently considered to be effective partners in phytoremediation. However, AMF communities in high levels of petroleum pollution are still poorly studied. We investigated the community structures of AMF in roots and rhizospheric soils of two plant species, Eleocharis elliptica and Populus tremuloides, growing spontaneously in high petroleum-contaminated sedimentation basins of a former petrochemical plant (91,000 µg/Kg of C10-C50 was recorded in a basin which is 26-fold higher than the threshold of polluted soil in Quebec, Canada). We used a PCR cloning, and sequencing approach, targeting the 18S rRNA gene to identify AMF taxa. The high concentration of petroleum-contamination largely influenced the AMF diversity, which resulted in less than five AMF operational taxonomical units (OTUs) per individual plant at all sites. The OTUs detected belong mainly to the Glomerales, with some from the Diversisporales and Paraglomerales, which were previously reported in high concentrations of metal contamination. Interestingly, we found a strong phylogenetic signal in OTU associations with host plant species identity, biotopes (roots or soils), and contamination concentrations (lowest, intermediate and highest). The genus Rhizophagus was the most dominant taxon representing 74.4% of all sequences analyzed in this study and showed clear association with the highest contamination level. The clear association of Rhizophagus with high contamination levels suggests the importance of the genus for the use of AMF in bioremediation, as well as for the survey of key AMF genes related to petroleum hydrocarbon resistance. By favoring plant fitness and mediating its soil microbial interactions, Rhizophagus spp. could enhance petroleum hydrocarbon pollutant degradation by both plants and their microbiota in contaminated sites.

2.
Mycorrhiza ; 28(5-6): 523-534, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29931403

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligatory plant symbionts that live underground, so few studies have examined their response to light. Responses to blue light by other fungi can be mediated by White Collar-1 (WC-1) and WC-2 proteins. These wc genes, together with the frequency gene (frq), also form part of the endogenous circadian clock. The clock mechanism has never been studied in AMF, although circadian growth of their hyphae in the field has been reported. Using both genomic and transcriptomic data, we have found homologs of wc-1, wc-2, and frq and related circadian clock genes in the arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis). Gene expression of wc-1, wc-2, and frq was analyzed using RT-qPCR on RNA extracted from germinating spores and from fungal material cultivated in vitro with transformed carrot roots. We found that all three core clock genes were expressed in both pre- and post-mycorrhizal stages of R. irregulare growth. Similar to the model fungus Neurospora crassa, the core circadian oscillator gene frq was induced by brief light stimulation. The presence of circadian clock and output genes in R. irregulare opens the door to the study of circadian clocks in the fungal partner of plant-AMF symbiosis. Our finding also provides new insight into the evolution of the circadian frq gene in fungi.


Assuntos
Relógios Circadianos/genética , Proteínas Fúngicas/genética , Micorrizas/genética , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Luz , Reação em Cadeia da Polimerase em Tempo Real , Simbiose , Transcriptoma
3.
Genome Biol Evol ; 10(1): 328-343, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329439

RESUMO

Horizontal gene transfer (HGT) is an important mechanism in the evolution of many living organisms particularly in Prokaryotes where genes are frequently dispersed between taxa. Although, HGT has been reported in Eukaryotes, its accumulative effect and its frequency has been questioned. Arbuscular mycorrhizal fungi (AMF) are an early diverged fungal lineage belonging to phylum Glomeromycota, whose phylogenetic position is still under debate. The history of AMF and land plant symbiosis dates back to at least 460 Ma. However, Glomeromycota are estimated to have emerged much earlier than land plants. In this study, we surveyed genomic and transcriptomic data of the model arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis) and its relatives to search for evidence of HGT that occurred during AMF evolution. Surprisingly, we found a signature of putative HGT of class I ribonuclease III protein-coding genes that occurred from autotrophic cyanobacteria genomes to R. irregulare. At least one of two HGTs was conserved among AMF species with high levels of sequence similarity. Previously, an example of intimate symbiosis between AM fungus and cyanobacteria was reported in the literature. Ribonuclease III family enzymes are important in small RNA regulation in Fungi together with two additional core proteins (Argonaute/piwi and RdRP). The eukaryotic RNA interference system found in AMF was conserved and showed homology with high sequence similarity in Mucoromycotina, a group of fungi closely related to Glomeromycota. Prior to this analysis, class I ribonuclease III has not been identified in any eukaryotes. Our results indicate that a unique acquisition of class I ribonuclease III in AMF is due to a HGT event that occurred from cyanobacteria to Glomeromycota, at the latest before the divergence of the two Glomeromycota orders Diversisporales and Glomerales.


Assuntos
Evolução Molecular , Glomeromycota/genética , Micorrizas/genética , Filogenia , Sequência de Aminoácidos , Cianobactérias/química , Cianobactérias/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Transferência Genética Horizontal , Genes Fúngicos , Glomeromycota/química , Micorrizas/química , Interferência de RNA , Ribonuclease III/química , Ribonuclease III/genética , Alinhamento de Sequência , Simbiose , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...