Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 551: 196-204, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38810690

RESUMO

Memory consolidation refers to a process by which labile newly formed memory traces are progressively strengthened into long term memories and become more resistant to interference. Recent work has revealed that spontaneous hippocampal activity during rest, commonly referred to as "offline" activity, plays a critical role in the process of memory consolidation. Hippocampal reactivation occurs during sharp-wave ripples (SWRs), which are events associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Memory consolidation occurs primarily through a coordinated communication between hippocampus and neocortex. Cortical slow oscillations drive the repeated reactivation of hippocampal memory representations together with SWRs and thalamo-cortical spindles, inducing long-lasting cellular and network modifications responsible for memory stabilization.In this review, we aim to comprehensively cover the field of "reactivation and memory consolidation" research by detailing the physiological mechanisms of neuronal reactivation and firing patterns during SWRs and providing a discussion of more recent key findings. Several mechanistic explanations of neuropsychiatric diseases propose that impaired neural replay may underlie some of the symptoms of the disorders. Abnormalities in neuronal reactivation are a common phenomenon and cause pathological impairment in several diseases, such as Alzheimer's disease (AD), epilepsy and schizophrenia. However, the specific pathological changes and mechanisms of reactivation in each disease are different. Recent work has also enlightened some of the underlying pathological mechanisms of neuronal reactivation in these diseases. In this review, we further describe how SWRs, ripples and slow oscillations are affected in Alzheimer's disease, epilepsy, and schizophrenia. We then compare the differences of neuronal reactivation and discuss how different reactivation abnormalities cause pathological changes in these diseases. Aberrant neural reactivation provides insights into disease pathogenesis and may even serve as biomarkers for early disease progression and treatment response.


Assuntos
Consolidação da Memória , Neurônios , Humanos , Consolidação da Memória/fisiologia , Animais , Neurônios/fisiologia , Hipocampo/fisiopatologia , Hipocampo/fisiologia , Ondas Encefálicas/fisiologia , Epilepsia/fisiopatologia , Doença de Alzheimer/fisiopatologia
2.
J Colloid Interface Sci ; 670: 626-634, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38781653

RESUMO

On-site quantitative analysis of pesticide residues is crucial for monitoring environmental quality and ensuring food safety. Herein, we have developed a reliable hydrogel portable kit using NaYbF4@NaYF4: Yb, Tm upconversion nanoparticles (UCNPs) combined with MnO2 nanoflakes. This portable kit is integrated with a smartphone reader and Python-assisted analysis platform to enable sample-to-result analysis for chlorpyrifos. The novel UCNPs maximizes energy donation to MnO2 acceptor by employing 100 % of activator Yb3+ in the nucleus for NIR excitation energy collection and confining emitter Tm3+ to the surface layer to shorten energy transfer distance. Under NIR excitation, efficient quenching of upconversion blue-violet emission by MnO2 nanoflakes occurs, and the quenched emission is recovered with acetylcholinesterase-mediated reactions. This process allows for the determination of chlorpyrifos by inhibiting enzymatic activity. The UCNPs/MnO2 were embedded to fabricate a hydrogel portable kit, the blue-violet emission images captured by smartphone were converted into corresponding gray values by Python-assisted superiority chart algorithm which achieves a real-time rapid quantitative analysis of chlorpyrifos with a detection limit of 0.17 ng mL-1. At the same time, pseudo-color images were also added by Python in "one run" to distinguish images clearly. This sensor detection with Python-assisted analysis platform provides a new perspective on pesticide monitoring and broadens the application prospects in bioanalysis.

3.
Food Chem ; 439: 138100, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041885

RESUMO

Monitoring organophosphorus pesticides is significant for food safety assessment. Herein, we developed upconversion nanoparticles (UCNPs)-based self-ratiometric fluorescent platform for the detection of chlorpyrifos. The UCNPs have the ability to confine the detection and reference functions in one nanoparticle. Specifically, the blue upconversion (UC) emission (448 nm) in the shell layer of UCNPs is quenched by the product of the acetylcholinesterase-mediated reaction, while the red UC emission (652 nm) from the core remains constant as a self-calibrated reference signal. Employing the inhibition property of chlorpyrifos, self-proportional fluorescence is employed to detect chlorpyrifos. As proof-of-concept, test strips are fabricated by loading the UCNPs onto filter paper. Combined with the smartphone and image-processing algorithm, chlorpyrifos quantitative testing is achieved with a detection limit of 14.4843 ng mL-1. This portable platform displays anti-interference capability and high stability in the complicated matrix, making it an effective candidate for on-site application.


Assuntos
Clorpirifos , Nanopartículas , Praguicidas , Praguicidas/análise , Acetilcolinesterase , Compostos Organofosforados , Corantes
4.
Phys Rev E ; 95(6-1): 062602, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709221

RESUMO

Similar to the spontaneous formation of colonies of bacteria, flocks of birds, or schools of fish, "living crystals" can be formed by artificial self-propelled particles such as Janus colloids. Unlike usual solids, these "crystals" are far from thermodynamic equilibrium. They fluctuate in time forming a crystalline structure, breaking apart and re-forming again. We propose a method to stabilize living crystals by applying a weak confinement potential that does not suppress the ability of the particles to perform self-propelled motion, but it stabilizes the structure and shape of the dynamical clusters. This gives rise to such configurations of living crystals as "living shells" formed by Janus colloids. Moreover, the shape of the stable living clusters can be controlled by tuning the potential strength. Our proposal can be verified experimentally with either artificial microswimmers such as Janus colloids, or with living active matter.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 1): 041406, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19518232

RESUMO

The structural properties of a binary colloidal quasi-one-dimensional system confined in a narrow channel are investigated through modified Monte Carlo simulations. Two species of particles with different magnetic moment interact through a repulsive dipole-dipole force are confined in a quasi-one-dimensional channel. The impact of three decisive parameters (the density of particles, the magnetic-moment ratio, and the fraction between the two species) on the transition from disordered phase to crystal-like phases and the transitions among the different mixed phases are summarized in a phase diagram.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(4 Pt 1): 041404, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17994985

RESUMO

Within the Monte Carlo formalism supplemented by the modified Newton-Raphson optimization technique, we investigated structural and dynamical properties of two-dimensional binary clusters confined in an external hard-wall potential. Two species of differently charged classical particles, interacting through the repulsive Coulomb force are confined in the cluster. Subtle changes in the energy landscape and the stable cluster configurations are investigated as a function of the total number of particles and the relative number of each of the two particle species. The excitation spectrum and the normal modes corresponding to the ground-state configuration of the system are discussed, and the lowest nonzero eigenfrequency as a measure of the stability of the cluster is analyzed. The influence of the particle mass on the eigenfrequencies and eigenmodes are studied, i.e., we study a binary system of particles with different charge and different mass. Several unique features distinct from a monodisperse system are obtained.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 1): 051807, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15600646

RESUMO

The distortion due to a fixed point impurity with variable charge placed in the center of a classical harmonically confined two-dimensional (2D) large Coulomb cluster is studied. We find that the net topological charge (N(-)-N+ ) of the system is always equal to six independent of the position and charge of the impurity. In comparison with a 2D cluster without impurity charge, only the breathing mode remains unchanged. The screening length is found to be a highly nonlinear function of the impurity charge. For values of the impurity charge smaller than the charge of the other particles, the system has almost the same screening strength. When the impurity charge is larger, the screening length is strongly enhanced. This result can be explained by the competition between the different forces active in the system.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(3 Pt 2): 036412, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15089420

RESUMO

The structural and dynamical properties of two-dimensional (2D) clusters of equally charged classical particles, which are confined in an external hard wall potential, are investigated through the Monte Carlo simulation technique. The ground-state configuration is investigated as a function of the interparticle interaction (Coulomb, dipole, logarithmic, and screened Coulomb). The excitation spectrum corresponding to the ground-state configuration of the system is discussed. The eigenmodes are investigated and the corresponding divergence and rotor are calculated, which indicates the "shearlike" and "compressionlike" aspects of the different modes. Both small and large clusters are considered.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(2 Pt 1): 021608, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12636693

RESUMO

The configurational and melting properties of large two-dimensional (2D) clusters of charged classical particles interacting with each other via the Coulomb potential are investigated through the Monte Carlo simulation technique. The particles are confined by a harmonic potential. For a large number of particles in the cluster (N>150), the configuration is determined by two competing effects, namely, the fact that in the center a hexagonal lattice is formed, which is the groundstate for an infinite 2D system, and the confinement that imposes its circular symmetry on the outer edge. As a result, a hexagonal Wigner lattice is formed in the central area while at the border of the cluster the particles are arranged in rings. In the transition region defects appear as dislocations and disclinations at the six corners of the hexagonal-shaped inner domain. Many different arrangements and types of defects are possible as metastable configurations with a slightly higher energy. The particle motion is found to be strongly related to the topological structure. Our results clearly show that the melting of the clusters starts near the geometry induced defects, and that three different melting temperatures can be defined corresponding to the melting of different regions in the cluster.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(4 Pt 2B): 046602, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12006042

RESUMO

Structural and static properties of a classical two-dimensional system consisting of a finite number of charged particles that are laterally confined by a parabolic potential are investigated by Monte Carlo simulations and the Newton optimization technique. This system is the classical analog of the well-known quantum dot problem. The energies and configurations of the ground and all metastable states are obtained. In order to investigate the barriers and the transitions between the ground and all metastable states we first locate the saddle points between them, then by walking downhill from the saddle point to the different minima, we find the path in configurational space from the ground state to the metastable states, from which the geometric properties of the energy landscape are obtained. The sensitivity of the ground-state configuration on the functional form of the interparticle interaction and on the confinement potential is also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA