Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 71(3): 1078-1091, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31626291

RESUMO

Phospholipids constitute the main component of biomembranes. During low-temperature storage and transportation of harvested bell peppers (Capsicum annuum), chilling injury participates in their decay. A primary cause of this chilling injury is phospholipid degradation. In this study, three genes encoding phospholipase D (PLD) were identified from bell peppers and their activities were examined under cold stress. Low temperature (4 °C) induced strong accumulation of the CaPLDα4 transcript, suggesting that it is associated with the phenomenon of phospholipid degradation and destruction of cell membranes. Low temperature also significantly induced increased amounts of NAM-ATAF1/2-CUC2 (NAC) domain transcription factors. CaNAC1 was found to interact with the promoter of CaPLD4 in a yeast one-hybrid screen. Electrophoretic mobility shift and ß-glucuronidase reporter assays demonstrated that CaNAC1 binds to the CTGCAG motif in the CaPLDα4 promoter, thereby activating its transcription and controlling phospholipid degradation. The ubiquitination sites of the CaNAC1 protein were characterized by liquid chromatography-tandem mass spectrometry. We conclude that CaNAC1 is a transcriptional activator of CaPLDα4 and suggested that it participates in the degradation of membrane lipids in bell peppers when they are stored at low temperature.


Assuntos
Capsicum/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfolipase D/metabolismo , Fosfolipídeos/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Capsicum/ultraestrutura , Resposta ao Choque Frio , Frutas/ultraestrutura , Ubiquitinação
2.
Hortic Res ; 6: 74, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231532

RESUMO

Postharvest broccoli is prone to yellowing during storage, which is the key factor leading to a reduction in value. To explore appropriate control methods, it is important to understand the mechanisms of yellowing. We analyzed the genes related to the metabolism of chlorophyll, carotenoids, and flavonoids and the transcription factors (TFs) involved in broccoli yellowing using transcriptome sequencing profiling. Broccoli stored at 10 °C showed slight yellowing on postharvest day 5 and serious symptoms on day 12. There were significant changes in chlorophyll fluorescence kinetics, mainly manifesting as a decrease in the Fv/Fm value and an increase in nonphotochemical quenching, during the yellowing process. Transcriptome sequencing profiles from samples of fresh broccoli and broccoli with slight and severe yellowing revealed 6, 5, and 4 differentially expressed genes involved in chlorophyll metabolism, carotenoid biosynthesis, and flavonoid biosynthesis, respectively. The transcription factor gene ontology categories showed that the MYB, bHLH, and bZip gene families were involved in chlorophyll metabolism. In addition, the transcription factor families included NACs and ethylene response factors (ERFs) that regulated carotenoid biosynthesis. Reverse transcription polymerase chain reaction further confirmed that bHLH66, PIF4, LOB13, NAC92, and APL were vital transcription factors that potentially regulated the CAO and HYD genes and were involved in chlorophyll metabolism and the carotenoid biosynthetic process. The flavonoid biosynthetic pathway was mainly regulated by MYBs, NACs, WRKYs, MADSs, and bZips. The results of the differentially expressed gene (DEG) and pigment content analyses indicated that the transcriptome data were accurately and positively associated with broccoli yellowing.

3.
Plant Physiol Biochem ; 139: 314-324, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30927694

RESUMO

Bell peppers are valued for their plentiful vitamin C and nutritional content. Pepper fruits are susceptible to cold storage, which leads to chilling injury (CI); however, the crucial metabolic product and molecular basis response to cold stress have not been elucidated definitely yet. To comprehensively understand the gene regulation network and CI mechanisms in response to cold stress on a molecular level, we performed high-throughput RNA-Seq analysis to investigate genome-wide expression profiles in bell peppers at different storage temperatures (4 °C and 10 °C). A total of 61.55 Gb of clean data were produced; 3863 differentially expressed genes (DEGs) including 1669 up-regulated and 2194 down-regulated were annotated and classified between the CI group and control. Together, a total of 41 cold-induced transcription factor families comprising 250 transcription factors (TFs) were identified. Notably, numerous DEGs involved in biomembrane stability, dehydration and osmoregulation, and plant hormone signal transduction processes were discovered. The transcriptional level of 20 DEGs was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Our results present transcriptome profiles of bell peppers in response to cold stress; the data obtained may be useful for the identification of key candidate genes and elucidation of the mechanisms underlying membrane damage during chilling injury.


Assuntos
Capsicum/genética , Capsicum/fisiologia , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...