Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 13(1): 183, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779199

RESUMO

BACKGROUND: N7-methylguanosine (m7G) is one of the most conserved modifications in nucleosides impacting mRNA export, splicing, and translation. However, the precise function and molecular mechanism of internal mRNA m7G methylation in adult hippocampal neurogenesis and neurogenesis-related Alzheimer's disease (AD) remain unknown. RESULTS: We profiled the dynamic Mettl1/Wdr4 expressions and m7G modification during neuronal differentiation of neural stem cells (NSCs) in vitro and in vivo. Adult hippocampal neurogenesis and its molecular mechanisms were examined by morphology, biochemical methods and biological sequencing. The translation efficiency of mRNA was detected by polysome profiling. The stability of Sptbn2 mRNA was constructed by RNA stability assay. APPswe/PS1ΔE9 (APP/PS1) double transgenic mice were used as model of AD. Morris water maze was used to detect the cognitive function. METHODS: We found that m7G methyltransferase complex Mettl1/Wdr4 as well as m7G was significantly elevated in neurons. Functionally, silencing Mettl1 in neural stem cells (NSCs) markedly decreased m7G modification, neuronal genesis and proliferation in addition to increasing gliogenesis, while forced expression of Mettl1 facilitated neuronal differentiation and proliferation. Mechanistically, the m7G modification of Sptbn2 mRNA by Mettl1 enhanced its stability and translation, which promoted neurogenesis. Importantly, genetic defciency of Mettl1 reduced hippocampal neurogenesis and spatial memory in the adult mice. Furthermore, Mettl1 overexpression in the hippocampus of APP/PS1 mice rescued neurogenesis and behavioral defects. CONCLUSION: Our findings unravel the pivotal role of internal mRNA m7G modification in Sptbn2-mediated neurogenesis, and highlight Mettl3 regulation of neurogenesis as a novel therapeutic target in AD treatment.

2.
J Neuroinflammation ; 16(1): 62, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871577

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by an abnormal accumulation of amyloid-ß (Aß) plaques, neuroinflammation, and impaired neurogenesis. Urolithin A (UA), a gut-microbial metabolite of ellagic acid, has been reported to exert anti-inflammatory effects in the brain. However, it is unknown whether UA exerts its properties of anti-inflammation and neuronal protection in the APPswe/PS1ΔE9 (APP/PS1) mouse model of AD. METHODS: Morris water maze was used to detect the cognitive function. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was performed to detect neuronal apoptosis. Immunohistochemistry analyzed the response of glia, Aß deposition, and neurogenesis. The expression of inflammatory mediators were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). The modulating effects of UA on cell signaling pathways were assayed by Western blotting. RESULTS: We demonstrated that UA ameliorated cognitive impairment, prevented neuronal apoptosis, and enhanced neurogenesis in APP/PS1 mice. Furthermore, UA attenuated Aß deposition and peri-plaque microgliosis and astrocytosis in the cortex and hippocampus. We also found that UA affected critical cell signaling pathways, specifically by enhancing cerebral AMPK activation, decreasing the activation of P65NF-κB and P38MAPK, and suppressing Bace1 and APP degradation. CONCLUSIONS: Our results indicated that UA imparted cognitive protection by protecting neurons from death and triggering neurogenesis via anti-inflammatory signaling in APP/PS1 mice, suggesting that UA might be a promising therapeutic drug to treat AD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cumarínicos/uso terapêutico , Citocinas/metabolismo , Encefalite/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Citocinas/genética , Modelos Animais de Doenças , Encefalite/etiologia , Feminino , Regulação da Expressão Gênica/genética , Gliose/tratamento farmacológico , Gliose/genética , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Placa Amiloide/tratamento farmacológico , Placa Amiloide/etiologia , Presenilina-1/genética , Presenilina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
Brain Behav Immun ; 79: 159-173, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30763768

RESUMO

Neuroinflammation, considered as a pathological hallmark of Alzheimer's disease (AD), has been demonstrated to affect hippocampal neurogenesis and cognitive function. Interleukin-6 (IL-6) is a proinflammatory cytokine known to modulate neurogenesis. However, the mechanisms are still largely unknown. Here, we reported that IL-6 suppressed neurogenesis via a JAK2/STAT3 signaling in neural stem cells (NSCs). Importantly, we found that NeuroD1 (Neurogenic differentiation 1) gene expression, which drives NSCs neurodifferentiation, was regulated by TET3 and DNMT1 in a JAK2/STAT3-dependent manner. We further found that JAK2/STAT3 inhibition enhanced demethylation of NeuroD1 regulatory elements in IL-6-treated cells, which is related to the significant upregulation of TET3 expression as well as the decreased expression of DNMT1. Furthermore, Inhibiting JAK2/STAT3 significantly rescued the memory deficits and hippocampal neurogenesis dysfunction in APP/PS1 mice. Our data suggest that JAK2/STAT3 signaling plays a vital role in suppressing neurogenesis of NSCs exposed to IL-6 at the epigenetic level, by regulating DNA methylation/demethylation.


Assuntos
Janus Quinase 2/metabolismo , Neurogênese/fisiologia , Fator de Transcrição STAT3/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Desmetilação do DNA , Metilação de DNA , Dioxigenases/genética , Dioxigenases/metabolismo , Hipocampo/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurogênese/imunologia , Neuroimunomodulação , Transdução de Sinais/imunologia
4.
Brain Behav Immun ; 69: 351-363, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29253574

RESUMO

Alzheimer'sdisease(AD) is characterized by deposition of amyloid-ß (Aß)plaques, neurofibrillary tangles, andneuronal loss, accompaniedbyneuroinflammation. Neuroinflammatoryprocesses are thought to contribute toAD pathophysiology. Metformin has been reported to have anti-inflammatory efficacy. However, whether metformin is responsible for the anti-neuroinflammationand neuroprotection on APPswe/PS1ΔE9 (APP/PS1) mice remains unclear. Here we showed that metformin attenuated spatial memory deficit, neuron loss in the hippocampus and enhanced neurogenesis in APP/PS1 mice. In addition, metformin administration decreased amyloid-ß (Aß)plaque load and chronic inflammation (activated microglia and astrocytes as well as pro-inflammatory mediators) in the hippocampus and cortex. Further study demonstrated that treatment with metformin enhanced cerebral AMPK activation. Meanwhile, metformin notably suppressed the activation of P65 NF-κB, mTOR and S6K, reduced Bace1 protein expression. Our data suggest that metformin can exert functional recovery of memory deficits and neuroprotective effect on APP/PS1 mice via triggering neurogenesis and anti-inflammation mediated by regulating AMPK/mTOR/S6K/Bace1 and AMPK/P65 NF-κB signaling pathways in the hippocampus, which may contribute to improvement in neurological deficits.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Metformina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Placa Amiloide/prevenção & controle , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Metformina/farmacologia , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo
5.
Stem Cell Reports ; 8(5): 1256-1269, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494938

RESUMO

Although valproic acid (VPA), has been shown to induce neuronal differentiation of neural stem cells (NSCs), the underlying mechanisms remain poorly understood. Here we investigated if and how mammalian target of rapamycin (mTOR) signaling is involved in the neuronal differentiation of VPA-induced NSCs. Our data demonstrated that mTOR activation not only promoted but also was necessary for the neuronal differentiation of NSCs induced by VPA. We further found that inhibition of mTOR signaling blocked demethylation of neuron-specific gene neurogenin 1 (Ngn1) regulatory element in induced cells. These are correlated with the significant alterations of passive DNA demethylation and the active DNA demethylation pathway in the Ngn1 promoter, but not the suppression of lysine-specific histone methylation and acetylation in the promoter region of Ngn1. These findings highlight a potentially important role for mTOR signaling, by working together with DNA demethylation, to influence the fate of NSCs via regulating the expression of Ngn1 in VPA-induced neuronal differentiation of NSCs.


Assuntos
Epigênese Genética , Células-Tronco Neurais/metabolismo , Neurogênese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Metilação de DNA , Inibidores Enzimáticos/farmacologia , Código das Histonas , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...