Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 24908-24919, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706177

RESUMO

Perovskite nanocrystal (PeNC) arrays are showing a promising future in the next generation of micro-light-emitting-diode (micro-LED) displays due to the narrow emission linewidth and adjustable peak wavelength. Electrohydrodynamic (EHD) inkjet printing, with merits of high resolution, uniformity, versatility, and cost-effectiveness, is among the competent candidates for constructing PeNC arrays. However, the fabrication of red light-emitting CsPbBrxI(3-x) nanocrystal arrays for micro-LED displays still faces challenges, such as low brightness and poor stability. This work proposes a design for a red PeNC colloidal ink that is specialized for the EHD inkjet printing of three-dimensional PeNC arrays with enhanced luminescence and stability as well as being adaptable to both rigid and flexible substrates. Made of a mixture of PeNCs, polymer polystyrene (PS), and a nonpolar xylene solvent, the PeNC colloidal ink enables precise control of array sizes and shapes, which facilitates on-demand micropillar construction. Additionally, the inclusion of PS significantly increases the brightness and environmental stability. By adopting this ink, the EHD printer successfully fabricated full-color 3D PeNC arrays with a spatial resolution over 2500 ppi. It shows the potential of the EHD inkjet printing strategy for high-resolution and robust PeNC color conversion layers for micro-LED displays.

2.
Nano Lett ; 24(12): 3661-3669, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408021

RESUMO

The lack of stability of red perovskite nanocrystals (PeNCs) remains the main problem that restricts their patterning application. In this work, the dual-ligand passivation strategy was introduced to stabilize PeNCs and inhibit their halogen ion migration during high-voltage electrohydrodynamic (EHD) inkjet printing. The as-printed red arrays exhibit the highest emisson intensity and least blue shift compared with samples with other passivation strategies under a high electric field during EHD inkjet printing. Combining with blue and green PeNC inks, single-color and tricolor color conversion layer arrays were successfully printed, with minimum pixel size of 5 µm and the highest spatial resolution of 2540 dpi. The color coordinate of CsPbBrI2 NCs arrays are located close to the red point, with a color gumat of 97.28% of Rec. 2020 standard. All of these show great potential in the application of color conversion layers in a near-eye micro-LED display.

3.
Environ Sci Pollut Res Int ; 30(58): 121834-121850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37962752

RESUMO

The development of urban blue-green spaces is highly recommended as a nature-based solution for mitigating the urban heat island phenomenon, improving urban sustainability, and enhancing resident well-being. However, limited attention has been given to the accumulative impact of the cooling effect and the comparison of different types of landscapes. Based on the maximum and accumulative perspectives, this study selected 375 green spaces, water bodies, and urban parks in 25 cities of the Yangtze River Delta (YRD) region in China to quantify their cooling effect. Correlation and regression analyses were employed to identify the dominant factors influencing the cooling performance. The results indicated that (1) compared to other landscape patches, water areas, and parks exhibited a reduction in daily average air temperature by 3.04 and 0.57 °C, respectively. Urban parks provided the largest cooling area (CA) of 56.44 ha in the YRD region, while water bodies demonstrated the highest cooling effect (CE) of 6.88, cooling intensity (CI) of 0.02, and cooling gradient (CG) of 0.99. (2) From the maximum perspective, the perimeter of the patches played a dominant role in CA and CE for all landscape patch types, contributing more than 40% in CA variation. (3) The dominant factors varied among different landscape types from accumulative perspectives. Green spaces were influenced by road density, shape index, and the proportion of water bodies within the CA, whereas water bodies were primarily affected by the coverage of blue spaces. Vegetation growth and densely populated surroundings contributed the most to the cooling of parks. These findings enhanced the comprehension of the cooling effect in comparable urban contexts and provided valuable insights for sustainable urban management.


Assuntos
Temperatura Alta , Parques Recreativos , Cidades , Rios , Crescimento Sustentável , China , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA