Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 157, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36944945

RESUMO

BACKGROUND: White root rot disease in rubber trees, caused by the pathogenic fungi Rigidoporus microporus, is currently considered a major problem in rubber tree plantations worldwide. Only a few reports have mentioned the response of rubber trees occurring at the non-infection sites, which is crucial for the disease understanding and protecting the yield losses. RESULTS: Through a comparative proteomic study using the two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) technique, the present study reveals some distal-responsive proteins in rubber tree leaves during the plant-fungal pathogen interaction. From a total of 12 selected differentially expressed protein spots, several defense-related proteins such as molecular chaperones and ROS-detoxifying enzymes were identified. The expression of 6 candidate proteins was investigated at the transcript level by Reverse Transcription Quantitative PCR (RT-qPCR). In silico, a highly-expressed uncharacterized protein LOC110648447 found in rubber trees was predicted to be a protein in the pathogenesis-related protein 10 (PR-10) class. In silico promoter analysis and structural-related characterization of this novel PR-10 protein suggest that it plays a potential role in defending rubber trees against R. microporus infection. The promoter contains WRKY-, MYB-, and other defense-related cis-acting elements. The structural model of the novel PR-10 protein predicted by I-TASSER showed a topology of the Bet v 1 protein family, including a conserved active site and a ligand-binding hydrophobic cavity. CONCLUSIONS: A novel protein in the PR-10 group increased sharply in rubber tree leaves during interaction with the white root rot pathogen, potentially contributing to host defense. The results of this study provide information useful for white root rot disease management of rubber trees in the future.


Assuntos
Hevea , Polyporales , Hevea/genética , Hevea/metabolismo , Proteômica , Fungos , Regulação da Expressão Gênica de Plantas
2.
Plants (Basel) ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771515

RESUMO

The genus Paris is an important and confusing taxon due to high variation within species, and differences between species are sometimes difficult to delimit. Thus, the status of some taxa has changed over time. To clarify the status of Paris species for plant conservation and effective management of this genus in Thailand, we performed an intensive survey in northern Thailand, studied morphological characteristics, and constructed a molecular phylogenic tree, which we compared to recently published results of this genus. Our results indicate that there are two species in Thailand: P. yunnanensis and a new species, P. siamensis. Detailed descriptions, illustrations, and the phylogenetic position of these two species are provided here.

3.
Physiol Mol Biol Plants ; 25(5): 1283-1299, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31564789

RESUMO

During growth of woody plant-trunk, the secondary meristem functions in giving rise the xylem and phloem. Rubber tree (Hevea brasiliensis Muell. Arg.), in addition, contains laticifers (latex producing vessels) in the vicinity of phloem. Insights into regulatory mechanisms of gene networks underlying laticifer proliferation in rubber tree has remained very limited. The candidate vascular development-related genes were selected to investigate for expression profile in phloem and xylem tissues of high latex yield- and high wood yield-clones of rubber tree. The differential gene expression between the mature branch-xylem and -phloem tissues was clearly observed. The cis-regulatory motif analysis revealed the existent of putative jasmonic acid (JA)- and brassinosteroid (BR)-responsive regulatory motifs in promoter regions of these genes, and consequently the effect of exogenous application of JA, BR or their respective signaling inhibitors, on the formation of laticifers in rubber tree was demonstrated. Interestingly, the laticifer numbers were significantly increased in JA-treatment, correlated with up-regulation of phloem development-related genes in both rubber tree clones. On the contrary, the laticifers were decreased in BR-treatment accompanying by up-regulation of xylem development-related genes, especially in high wood yield-rubber tree clone. BR-inhibitor treatment also enhanced laticifer numbers, while JA-inhibitor suppressed laticifer differentiation. Taken together, this study unveils the molecular interplay between JA/BR on vascular development in rubber tree and how this impacts the appearance of laticifers in this plant. This process is vital for a better understanding on laticifer differentiation and its impact in the manipulation of wood and latex yield in rubber tree improvement program.

4.
Plant Physiol Biochem ; 84: 203-212, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25289520

RESUMO

The rubber tree is an economically important plant that produces natural rubber for various industrial uses. The application of ethylene contributes to increased latex production in rubber trees; however, the molecular biology behind the effects of ethylene on latex yield remains to be elucidated. Recently, the intersection between microRNA (miRNA) regulation and phytohormone responses has been revealed. Insight into the regulation of miRNAs and their target genes should help to determine the functional importance of miRNAs as well as the role of miRNAs in signaling under ethylene stimulation in the rubber tree. In this study, hbr-miR159 and hbr-miR166 were down-regulated in bark under ethylene treatment. The ethylene also down-regulated ATHB15-like (Class III Homeodomain Leucine Zipper, HD-ZIP III) which have been extensively implicated in the regulation of primary and secondary vascular tissue pattern formation. The strong negative-regulation of ARF6/ARF8 caused by hbr-miR167 involved in an attenuation of vascular development and may gradually lead to bark dryness syndrome in the long term ethylene treatment. The negative correlation of hbr-miR172 and its target REF3 in the inner soft bark under ethylene treatment results in dramatic increases in latex yield in the ethylene-sensitive clone of the rubber tree. The overall results suggested that the differential expression of HD-ZIP III, miR167/ARF6, ARF8, and miR172/REF3 and related genes may play possible roles in the response to ethylene treatment, resulting in longer latex flow and increased latex yield.


Assuntos
Etilenos/farmacologia , Hevea/efeitos dos fármacos , Hevea/metabolismo , MicroRNAs/genética , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Hevea/genética
5.
J Plant Physiol ; 171(13): 1117-26, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24973583

RESUMO

Trunk phloem necrosis (TPN), a physiological bark disorder of the rubber tree (Hevea brasiliensis), is a serious problem that affects the yield of natural rubber. The resultant bark dryness occurs in up to half of a plantation's trees in almost every rubber tree plantation region, causing a great annual loss of dry rubber for natural rubber production. Different types of injury and physical damage caused by mechanical activation as well as environmental stresses cause physiological bark disorder in tree. Due to the essential role of miR166, miR393 and miR167 in vascular development and abiotic stress response in diverse plant species, it was interesting to investigate the role of these miRNAs in rubber trees, particularly during development of a physiological bark disorder. In this study, the expression pattern of miR166, miR393 and miR167; and their target genes, HD-ZIP III; TIR1 and ARF8, respectively; was demonstrated in healthy tree and different TPN trees. Their existence and function in vivo was validated using RNA ligase-mediated 5' rapid amplification of cDNA ends. Taken together, the results suggest a possible dual role of these three miRNAs in maintaining normal bark regeneration in healthy trees, coping with overtapping by affecting the wound healing system leading to abnormal bark regeneration in overtapped-TPN trees, and act as additional forces that enhance the attenuation of vascular development resulting in bark necrosis and cell death in the natural-TPN tree. This is the first study to address the molecular events of miRNAs involved in the physiological bark disorder TPN in rubber tree. Further study will open the possibility to better understanding of physiological and molecular perspectives during TPN development, and lead to improvement of monitoring the exploitation of rubber tree plantations.


Assuntos
Regulação da Expressão Gênica de Plantas , Hevea/genética , MicroRNAs/genética , DNA Complementar/genética , Hevea/fisiologia , Látex/metabolismo , Floema/genética , Floema/fisiologia , Casca de Planta/genética , Casca de Planta/fisiologia , RNA de Plantas/genética , Estresse Fisiológico
6.
Planta ; 236(2): 437-45, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22407387

RESUMO

MicroRNAs (miRNAs) are short RNAs with essential roles in gene regulation in various organisms including higher plants. In contrast to the vast information on miRNAs from many economically important plants, almost nothing has been reported on the identification or analysis of miRNAs from rubber tree (Hevea brasiliensis L.), the most important natural rubber-producing crop. To identify miRNAs and their target genes in rubber tree, high-throughput sequencing combined with a computational approach was performed. Four small RNA libraries were constructed for deep sequencing from mature and young leaves of two rubber tree clones, PB 260 and PB 217, which provide high and low latex yield, respectively. 115 miRNAs belonging to 56 known miRNA families were identified, and northern hybridization validated miRNA expression and revealed developmental stage-dependent and clone-specific expression for some miRNAs. We took advantage of the newly released rubber tree genome assembly and predicted 20 novel miRNAs. Further, computational analysis uncovered potential targets of the known and novel miRNAs. Predicted target genes included not only transcription factors but also genes involved in various biological processes including stress responses, primary and secondary metabolism, and signal transduction. In particular, genes with roles in rubber biosynthesis are predicted targets of miRNAs. This study provides a basic catalog of miRNAs and their targets in rubber tree to facilitate future improvement and exploitation of rubber tree.


Assuntos
Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Hevea/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Quitinases/genética , Quitinases/metabolismo , Biblioteca Gênica , Hevea/metabolismo , MicroRNAs/isolamento & purificação , MicroRNAs/metabolismo , Muramidase/genética , Muramidase/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Análise de Sequência de RNA
7.
J Plant Physiol ; 168(3): 253-62, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20637523

RESUMO

Natural rubber is synthesized in laticifers in the inner liber of the rubber tree (Hevea brasiliensis). Upon bark tapping, the latex is expelled due to liber turgor pressure. The mature laticifers are devoid of plasmodesmata; therefore a corresponding decrease in the total latex solid content is likely to occur due to water influx inside the laticifers. Auxins and ethylene used as efficient yield stimulants in mature untapped rubber trees, but, bark treatments with abscisic acid (ABA) and salicylic acid (SA) could also induce a transient increase latex yield. We recently reported that there are three aquaporin genes, HbPIP2;1, HbTIP1;1 and HbPIP1;1, that are regulated differentially after ethylene bark treatment. HbPIP2;1 was up-regulated in both the laticifers and the inner liber tissues, whereas HbTIP1;1 was up-regulated in the latex cells, but very markedly down-regulated in the inner liber tissues. Conversely, HbPIP1;1 was down-regulated in both tissues. In the present study, HbPIP2;1 and HbTIP1;1 showed a similar expression in response to auxin, ABA and SA, as seen in ethylene stimulation, while HbPIP1;1 was slightly regulated by auxin, but neither by ABA nor SA. The analysis of the HbPIP1;1 promoter region indicated the presence of only ethylene and auxin responsive elements. In addition, the poor efficiency of this HbPIP1;1 in increasing plasmalemma water conductance was confirmed in Xenopus oocytes. Thus, an increase in latex yield in response to all of these hormones was proposed to be the major function of aquaporins, HbPIP2;1 and HbTIP1;1. This study emphasized that the circulation of water between the laticifers and their surrounding tissues that result in latex dilution, as well as the probable maintenance of the liber tissues turgor pressure, favor the prolongation of latex flow.


Assuntos
Regulação da Expressão Gênica de Plantas , Hevea/efeitos dos fármacos , Hevea/metabolismo , Látex/metabolismo , Casca de Planta/efeitos dos fármacos , Casca de Planta/metabolismo , Aquaporinas/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase
8.
Plant Cell Physiol ; 51(11): 1878-88, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20929914

RESUMO

Quebrachitol is a cyclic polyol and, along with sucrose, is one of the main sugars in Hevea latex. However, in contrast to sucrose, the mechanism and regulation of quebrachitol absorption is still unknown. Screening a latex-derived cDNA library using polyol transporter-specific probes, two full-length cDNAs were isolated, and named HbPLT1 and HbPLT2 (for Hevea brasiliensis polyol transporter 1 and 2, respectively). Their respective sequences exhibited close similarity with the previously cloned acyclic sugar polyol transporters, and shared the main features of the major facilitative superfamily. The functional activity of one of the cDNAs was determined by using an HbPLT2-complemented yeast strain. These strains displayed a marginal absorption of cyclic (inositol) and acyclic (mannitol and sorbitol) polyol but no absorption of sucrose, hexose and glycerol. Active absorption for xylitol was detected, and was competitively inhibited by quebrachitol. HbPLT1 and HbPLT2 expression patterns varied in response to different stimuli. Bark treatment with ethylene resulted in an early and significant up-regulation of HbPLT2 transcripts in laticifers as well as in inner bark cells, when compared with HbPLT1. Other treatments, especially mechanical wounding, strongly induced HbPLT2 transcripts. These data were consistent with the presence of ethylene and a wound-responsive regulatory cis-element on the sequence of the HbPLT2 promoter. All these findings together with those recently obtained for sucrose transporters and aquaporins are discussed in relation to the different roles for quebrachitol in Hevea brasiliensis.


Assuntos
Euphorbiaceae/genética , Proteínas de Plantas/metabolismo , Polímeros/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Clonagem Molecular , DNA Complementar/genética , Genes de Plantas , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
9.
Tree Physiol ; 30(12): 1586-98, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20980289

RESUMO

Hevea brasiliensis is an important industrial crop for natural rubber production. Latex biosynthesis occurs in the cytoplasm of highly specialized latex cells and requires sucrose as the unique precursor. Ethylene stimulation of latex production results in high sugar flow from the surrounding cells of inner bark towards the latex cells. The aim of this work was to understand the role of seven sucrose transporters (HbSUTs) and one hexose transporter (HbHXT1) in this process. Two Hevea clones were used: PB217 and PB260, respectively described as high and low yielding clones. The expression pattern of these sugar transporters (HbSUTs and HbHXT1) was monitored under different physiological conditions and found to be maximal in latex cells. HbSUT1, one of the most abundant isoforms, displayed the greatest response to ethylene treatment. In clone PB217, ethylene treatment led to a higher accumulation of HbSUT1B in latex cells than in the inner bark tissues. Conversely, stronger expression of HbSUT1B was observed in inner bark tissues than in latex cells of PB260. A positive correlation with HbSUT1B transcript accumulation and increased latex production was further supported by its lower expression in latex cells of the virgin clone PB217.


Assuntos
Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hevea/efeitos dos fármacos , Látex/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Compostos Organofosforados/farmacologia , Proteínas de Plantas/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , DNA de Plantas/genética , Hevea/genética , Hevea/metabolismo , Proteínas de Membrana Transportadoras/genética , Filogenia , Casca de Planta , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Caules de Planta , Transporte Proteico , Fatores de Tempo
10.
Physiol Plant ; 140(2): 189-98, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20536786

RESUMO

Cassava (Manihot esculenta Crantz) is a root crop that accumulates large quantities of starch, and it is an important source of carbohydrate. Study on gene expressions during storage root development provides important information on storage root formation and starch accumulation as well as unlock new traits for improving of starch yield. cDNA-Amplified Fragment Length Polymorphism (AFLP) was used to compare gene expression profiles in fibrous and storage roots of cassava cultivar Kasetsart 50. Total of 155 differentially expressed transcript-derived fragments with undetectable or low expression in leaves were characterized and classified into 11 groups regarding to their functions. The four major groups were no similarity (20%), hypothetical or unknown proteins (17%), cellular metabolism and biosynthesis (17%) and cellular communication and signaling (14%). Interestingly, sulfite reductase (MeKD82), calcium-dependent protein kinase (CDPK) (MeKD83), ent-kaurene synthase (KS) (MeKD106) and hexose transporter (HT) (MeKD154) showed root-specific expression patterns. This finding is consistent with previously reported genes involved in the initiation of potato tuber. Semi-quantitative reverse transcription polymerase chain reaction of early-developed root samples confirmed that those four genes exhibited significant expression with similar pattern in the storage root initiation and early developmental stages. We proposed that KS and HT may involve in transient induction of CDPK expression, which may play an important role in the signaling pathway of storage root initiation. Sulfite reductase, on the other hand, may involve in storage root development by facilitating sulfur-containing protein biosynthesis or detoxifying the cyanogenic glucoside content through aspartate biosynthesis.


Assuntos
Perfilação da Expressão Gênica , Genoma de Planta/genética , Manihot/genética , Raízes de Plantas/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA Complementar/química , DNA Complementar/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Manihot/crescimento & desenvolvimento , Dados de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
11.
Plant Physiol ; 151(2): 843-56, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19656906

RESUMO

Natural rubber is synthesized in specialized articulated cells (laticifers) located in the inner liber of Hevea brasiliensis. Upon bark tapping, the laticifer cytoplasm (latex) is expelled due to liber tissue turgor pressure. In mature virgin (untapped) trees, short-term kinetic studies confirmed that ethylene, the rubber yield stimulant used worldwide, increased latex yield, with a concomitant decrease in latex total solid content, probably through water influx in the laticifers. As the mature laticifers are devoid of plasmodesmata, the rapid water exchanges with surrounding liber cells probably occur via the aquaporin pathway. Two full-length aquaporin cDNAs (HbPIP2;1 and HbTIP1;1, for plasma membrane intrinsic protein and tonoplast intrinsic protein, respectively) were cloned and characterized. The higher efficiency of HbPIP2;1 than HbTIP1;1 in increasing plasmalemma water conductance was verified in Xenopus laevis oocytes. HbPIP2;1 was insensitive to HgCl(2). In situ hybridization demonstrated that HbPIP2;1 was expressed in all liber tissues in the young stem, including the laticifers. HbPIP2;1 was up-regulated in both liber tissues and laticifers, whereas HbTIP1;1 was down-regulated in liber tissues but up-regulated in laticifers in response to bark Ethrel treatment. Ethylene-induced HbPIP2;1 up-regulation was confirmed by western-blot analysis. The promoter sequences of both genes were cloned and found to harbor, among many others, ethylene-responsive and other chemical-responsive (auxin, copper, and sulfur) elements known to increase latex yield. Increase in latex yield in response to ethylene was emphasized to be linked with water circulation between the laticifers and their surrounding tissues as well as with the probable maintenance of liber tissue turgor, which together favor prolongation of latex flow.


Assuntos
Aquaporinas/metabolismo , Etilenos/farmacologia , Hevea/citologia , Hevea/metabolismo , Látex/biossíntese , Proteínas de Plantas/metabolismo , Água/fisiologia , Sequência de Aminoácidos , Animais , Aquaporinas/química , Aquaporinas/genética , Sequência de Bases , Western Blotting , Clonagem Molecular , Biologia Computacional , DNA Complementar/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hevea/efeitos dos fármacos , Hevea/genética , Cinética , Dados de Sequência Molecular , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Casca de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Xenopus
12.
Ann Bot ; 104(4): 635-47, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19567416

RESUMO

BACKGROUND AND AIMS: The major economic product of Hevea brasiliensis is a rubber-containing cytoplasm (latex), which flows out of laticifers (latex cells) when the bark is tapped. The latex yield is stimulated by ethylene. Sucrose, the unique precursor of rubber synthesis, must cross the plasma membrane through specific sucrose transporters before being metabolized in the laticifers. The relative importance of sucrose transporters in determining latex yield is unknown. Here, the effects of ethylene (by application of Ethrel on sucrose transporter gene expression in the inner bark tissues and latex cells of H. brasiliensis are described. METHODS: Experiments, including cloning sucrose transporters, real time RT-PCR and in situ hybridization, were carried out on virgin (untapped) trees, treated or untreated with the latex yield stimulant Ethrel. KEY RESULTS: Seven putative full-length cDNAs of sucrose transporters were cloned from a latex-specific cDNA library. These transporters belong to all SUT (sucrose transporter) groups and differ by their basal gene expression in latex and inner soft bark, with a predominance of HbSUT1A and HbSUT1B. Of these sucrose transporters, only HbSUT1A and HbSUT2A were distinctly increased by ethylene. Moreover, this increase was shown to be specific to laticifers and to ethylene application. CONCLUSION: The data and all previous information on sucrose transport show that HbSUT1A and HbSUT2A are related to the increase in sucrose import into laticifers, required for the stimulation of latex yield by ethylene in virgin trees.


Assuntos
Etilenos/farmacologia , Hevea/citologia , Hevea/metabolismo , Látex/biossíntese , Sacarose/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Transporte Biológico/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Hevea/enzimologia , Hevea/genética , Hibridização In Situ , Látex/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos/efeitos dos fármacos , Filogenia , Casca de Planta/efeitos dos fármacos , Casca de Planta/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Árvores/efeitos dos fármacos , Árvores/genética
13.
Phytochemistry ; 70(6): 730-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19409582

RESUMO

The latex of Hevea brasiliensis, expelled upon bark tapping, is the cytoplasm of anastomosed latex cells in the inner bark of the rubber tree. Latex regeneration between two tappings is one of the major limiting factors of rubber yield. Hevea species contain high amounts of cyanogenic glucosides from which cyanide is released when the plant is damaged providing an efficient defense mechanism against herbivores. In H. brasiliensis, the cyanogenic glucosides mainly consist of the monoglucoside linamarin (synthesized in the leaves), and its diglucoside transport-form, linustatin. Variations in leaf cyanide potential (CNp) were studied using various parameters. Results showed that the younger the leaf, the higher the CNp. Leaf CNp greatly decreased when leaves were directly exposed to sunlight. These results allowed us to determine the best leaf sampling conditions for the comparison of leaf CNp. Under these conditions, leaf CNp was found to vary from less than 25 mM to more than 60 mM. The rubber clones containing the highest leaf CNp were those with the highest yield potential. In mature virgin trees, the CNp of the trunk inner bark was shown to be proportional to leaf CNp and to decrease on tapping. However, the latex itself exhibited very low (if any) CNp, while harboring all the enzymes (beta-D-diglucosidase, linamarase and beta-cyanoalanine synthase) necessary to metabolize cyanogenic glucosides to generate non-cyanogenic compounds, such as asparagine. This suggests that in the rubber tree bark, cyanogenic glucosides may be a source of buffering nitrogen and glucose, thereby contributing to latex regeneration/production.


Assuntos
Cianetos/análise , Glucosídeos/química , Hevea/química , Látex/química , Casca de Planta/química , Folhas de Planta/química , Sequência de Carboidratos
14.
J Am Mosq Control Assoc ; 22(2): 192-7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17014059

RESUMO

Anopheles (Cellia) maculatus Theobald is a major malaria vector in southern Thailand and peninsular Malaysia, and previous population genetic studies suggested that mountain ranges act as barriers to gene flow. In this study, we examine the genetic variance among 12 collections of natural populations in southern Thailand by analyzing 7 microsatellite loci. Based on analysis of molecular variance (AMOVA), three geographic populations of An. maculatus are suggested. The southern population exists in western Thailand north of 12 degrees north latitude. Mosquitoes to the south fall into two genetic populations: 1) the middle southern collections located on the west side of the Phuket mountain range between 8 degrees and 10 degrees north latitude, and 2) the southern collections located on the east of the Phuket mountain range located between approximately 6.5 degrees and 11.5 degrees north latitude. AMOVA revealed significant genetic differentiation between northern and middle southern and southern populations. The middle southern population was moderately differentiated from the southern population. Furthermore, gene flow was restricted between proximal collections located on different sides of the Phuket mountain range. Collections separated by 50 km exhibited restriction of gene flow when separated by geographic barriers, whereas greater gene flow was evident among collections 650 km apart but without geographic barriers.


Assuntos
Anopheles/genética , Animais , DNA/genética , Genética Populacional , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase , Tailândia
15.
Plant Cell Physiol ; 44(7): 707-17, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12881498

RESUMO

Latex coagulation is the main limiting factor of rubber yield in Hevea brasiliensis (rubber tree). Using laser diffraction, we set up and optimized a new method for monitoring the kinetics of rubber particle (RP) aggregation, a prerequisite for latex coagulation. In contrast to any previous method used, laser diffraction allows continuous monitoring changes in size of RP aggregates, thereby allowing characterization and quantification of the processes involved in latex coagulation. Using this technique, we confirm that RP aggregating factors are proteins compartmentalized within latex cell vacuoles (lutoids), which, especially at relatively acidic physiological pH, can induce formation of RP aggregates large enough to induce plugging of severed latex vessel extremities. Conversely, latex cytosol was found to harbor anti-aggregating proteins. Further, we were able to titrate the RP-aggregating efficiency of the intralutoidic serum and the anti-aggregating efficiency of the cytosol. Preliminary assays showed that these two parameters were correlated with the yield potential of the tested rubber clones. This method will allow identification and characterization of proteins involved in latex coagulation, hence in rubber yield. We suggest that laser diffraction could be used to monitor the kinetics and characterize the physiological processes involved in aggregation of any particles, organelles or cells.


Assuntos
Hevea/fisiologia , Lasers , Látex/metabolismo , Precipitação Química , Clonagem Molecular , Hevea/genética , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA