Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 106: 154424, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126544

RESUMO

BACKGROUND: Dengue virus (DENV) is considered one of the most important pathogens in the world causing 390 million infections each year. Currently, the development of vaccines against DENV presents some shortcomings and there is no antiviral therapy available for its infection. An important challenge is that both treatments and vaccines must be effective against all four DENV serotypes. Nordihydroguaiaretic acid (NDGA), isolated from Larrea divaricata Cav. (Zygophyllaceae) has shown a significant inhibitory effect on a broad spectrum of viruses, including DENV serotypes 2 and 4. PURPOSE: We evaluated the in vitro virucidal and antiviral activity of NDGA on DENV serotype 1 (DENV1), including the study of its mechanism of action, to provide more evidence on its antiviral activity. METHODS: The viability of viral particles was quantified by the plaque-forming unit reduction method. NDGA effects on DENV1 genome and viral proteins were evaluated by qPCR and immunofluorescence, respectively. Lysosomotropic activity was assayed using acridine orange and neutral red dyes. RESULTS: NDGA showed in vitro virucidal and antiviral activity against DENV1. The antiviral effect would be effective within the first 2 h after viral internalization, when the uncoating process takes place. In addition, we determined by qPCR that NDGA decreases the amount of intracellular RNA of DENV1 and, by immunofluorescence, the number of cells infected. These results indicate that the antiviral effect of NDGA would have an intracellular mechanism of action, which is consistent with its ability to be incorporated into host cells. Considering the inhibitory activity of NDGA on the cellular lipid metabolism, we compared the antiviral effect of two inhibitors acting on two different pathways of this type of metabolism: 1) resveratrol that inhibits the sterol regulatory element of binding proteins, and 2) caffeic acid that inhibits the 5-lipoxygenase (5-LOX) enzyme. Only caffeic acid produced an inhibitory effect on DENV1 infection. We studied the lysosomotropic activity of NDGA on host cells and found, for the first time, that this compound inhibited the acidification of cell vesicles which would prevent DENV1 uncoating process. CONCLUSION: The present work contributes to the knowledge of NDGA activity on DENV. We describe its activity on DENV1, a serotype different to those that have been already reported. Moreover, we provide evidence on which stage/s of the viral replication cycle NDGA exerts its effects. We suggest that the mechanism of action of NDGA on DENV1 is related to its lysosomotropic effect, which inhibits the viral uncoating process.


Assuntos
Vírus da Dengue , Laranja de Acridina/farmacologia , Antivirais/farmacologia , Araquidonato 5-Lipoxigenase/genética , Ácidos Cafeicos , Corantes/farmacologia , Vírus da Dengue/fisiologia , Masoprocol/farmacologia , Vermelho Neutro/farmacologia , RNA , Resveratrol/farmacologia , Sorogrupo , Esteróis/farmacologia , Proteínas Virais , Replicação Viral
2.
Planta Med ; 87(9): 716-723, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33622002

RESUMO

Heterophyllaea pustulata is a phototoxic plant from Argentina. Aerial parts extracts, high in photosensitizing anthraquinones, have shown in vitro antiviral activity. The purpose of this study was to study the antiherpetic activity of the main purified anthraquinones, even evaluating their competence as photodynamic sensitizers to photo-stimulate the antiviral effect. In vitro antiviral activity against Herpes Simplex virus type I and the photo-inactivation of viral particle were studied by the Neutral Red uptake test and observation of the cytopathic effect. Rubiadin 1-methyl ether and 5,5'-bisoranjidiol produced a significant effect (≥ 80% inhibition) with minimal damage to host cells (subtoxic concentration). Anthraquinones with poor antiherpetic activity at its maximum noncytotoxic concentration showed an important photo-stimulated effect, such is the case of soranjidiol and 5,5'-bisoranjidiol (28.0 ± 6.3 vs. 81.8 ± 2.1% and 15.5 ± 0.3 vs. 89.8 ± 1.7%, respectively). The study also proved the decrease of viral particles, necessary to reduce infection. Therefore, photosensitizing anthraquinones from natural resources could be proposed to develop new treatments for localized viral lesions with antimicrobial photodynamic therapy.


Assuntos
Herpes Simples , Rubiaceae , Antraquinonas/farmacologia , Antibacterianos , Antivirais/farmacologia , Argentina , Herpes Simples/tratamento farmacológico , Simplexvirus
3.
Antiviral Res ; 187: 104976, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444704

RESUMO

The genus Orthobunyavirus are a group of viruses within arbovirus, with a zoonotic cycle, some of which could lead to human infection. A characteristic of these viruses is their lack of antiviral treatment or vaccine for its prevention. The objective of this work was to study the in vitro antiviral activity of nordihydroguaiaretic acid (NDGA), the most important active compound of Larrea divaricata Cav. (Zigophyllaceae), against Fort Sherman virus (FSV) as a model of Orthobunyavirus genus. At the same time, the effect of NDGA as a lipolytic agent on the cell cycle of this viral model was assessed. The method of reducing plaque forming units on LLC-MK2 cells was used to detect the action of NDGA on CbaAr426 and SFCrEq231 isolates of FSV. NDGA did not show virucidal effect, but it had antiviral activity with a similar inhibition in both isolates, which was dose dependent. It was established that the NDGA has a better inhibition 1-h post-internalization (p.i.), showing a different behavior in each isolate, which was dependent upon the time p.i. Since virus multiplication is dependent on host cell lipid metabolism, the antiviral effect of NDGA has been previously related to its ability to disturb the lipid metabolism, probably by interfering with the 5-lipoxigenase (5-LOX) and the sterol regulatory element-binding proteins (SREBP) pathway. We determined by using caffeic acid, a 5-LOX inhibitor, that the inhibition of this enzyme negatively affected the FSV replication; and by means of resveratrol, a SREBP1 inhibitor, it was showed that the negative regulation of this pathway only had action on the SFCrEq231 reduction. In addition, it was proved that the NDGA acts intracellularly, since it showed the ability to incorporate into LLC-MK2 cells. The information provided in this work converts the NDGA into a compound with antiviral activity in vitro against FSV (Orthobunyavirus), which can be subjected to structural modifications in the future to improve the activity.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Masoprocol/farmacologia , Orthobunyavirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Relação Dose-Resposta a Droga , Haplorrinos , Viabilidade Microbiana , Orthobunyavirus/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Tempo
4.
Rev Argent Microbiol ; 53(2): 154-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33176955

RESUMO

St. Louis encephalitis (SLEV) and West Nile (WNV) arboviruses, which circulate in Argentina, are maintained in enzootic transmission cycles involving Culex mosquitoes (vectors) and birds belonging to orders Passeriformes and Columbiformes (amplifier hosts). The objective of this work was to determine the circulation of both viruses among wild birds in a semiarid ecosystem in the Province of La Rioja through a serologic survey. During spring 2013 and fall 2014, a total of 326 wild birds belonging to 41 species were captured in areas close to the cities of La Rioja and Chilecito, in the Province of La Rioja. While exposure to SLEV and WNV was analyzed in birds' serum through neutralizing antibody detection, viral circulation was estimated through apparent seroprevalence of neutralizing antibodies. The exposure of the avian community to viruses was 3.02% for SLEV and 1.89% for WNV, while 1.19% corresponded to coinfections. Our study confirms for the first time the circulation of SLEV and WNV in wild birds in the Province of La Rioja. Moreover, it is the first study to register neutralizing antibodies for flavivirus in the species Leptotila verreauxi (White-tipped Dove) (WNV) and Melanerpes cactorum (White-fronted Woodpecker) (SLEV). These results suggest that in semiarid ecosystems from northwestern Argentina the requirements and conditions for amplification and enzootic maintenance of SLEV and WNV would be present.


Assuntos
Encefalite de St. Louis , Vírus do Nilo Ocidental , Animais , Anticorpos Antivirais , Argentina/epidemiologia , Ecossistema , Vírus da Encefalite de St. Louis , Encefalite de St. Louis/epidemiologia , Encefalite de St. Louis/veterinária , Estudos Soroepidemiológicos
5.
Front Microbiol ; 9: 1181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930541

RESUMO

Saint Louis encephalitis virus (SLEV) is a neglected flavivirus that causes severe neurological disorders. The epidemic strain of SLEV, CbaAr-4005, isolated during an outbreak in Córdoba city (Argentina), causes meningitis and encephalitis associated with neurological symptoms in a murine experimental model. Here, we identified the affected brain areas and the damage triggered by this neurotropic arbovirus. We performed a detailed analysis of brain neurodegeneration associated with CbaAr-4005 SLEV infection in mice. The motor cortex, corpus striatum and cerebellum were the most affected structures. Neurodegeneration was also found in the olfactory bulb, thalamus, hypothalamus, hippocampus, and hindbrain. SLEV infection triggered brain cell apoptosis as well as somatodendritic and terminal degeneration. In addition, we observed massive excitotoxic-like degeneration in many cortical structures. Apoptosis was also detected in the neuroblastoma cell line N2a cultured with SLEV. The results evidenced that SLEV CbaAr-4005 infection induced severe degenerative alterations within the central nervous system of infected mice, providing new information about the targets of this flavivirus infection.

6.
Photochem Photobiol Sci ; 16(2): 201-210, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976779

RESUMO

The photophysical, photoinduced pro-oxidant and antibacterial properties in vitro of the natural occurring parietin (PTN; 1,8-dihydroxy-3-methoxy-6-methyl-9,10-anthraquinone) were evaluated. PTN was extracted from the lichen identified as Teloschistes flavicans (Sw.) Norm. (Telochistaceae). Results indicate that in chloroform solution, PTN presents spectroscopic features corresponding to an excited-state intramolecular proton-transfer (ESIPT) state with partial keto-enol tautomerization. In argon-saturated solutions, the singlet excited state is poorly fluorescent (ΦF = 0.03), decaying by efficient intersystem crossing to an excited triplet state 3PTN*, as detected by laser-flash photolysis experiments. In the presence of triplet molecular oxygen, the 3PTN* was fully quenched producing singlet molecular oxygen (1O2) with a quantum yield of 0.69. In addition, in buffer solutions, PTN has the ability to also generate a superoxide radical anion (O2˙-) in a human leukocyte model and its production was enhanced under UVA-Vis irradiation. Finally, the in vitro antibacterial capability of PTN in the dark and under UVA-Vis illumination was compared in microbial cultures of both Gram positive and negative bacteria. As a result, PTN showed promising photo-induced antibacterial activity through the efficient photosensitized generation of both 1O2 and O2˙- species. Thus, we have demonstrated that PTN, an efficient photo-screening pigment in lichens, is also a good photosensitizer in solution with promising applications in antibacterial photodynamic therapy.


Assuntos
Emodina/análogos & derivados , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Emodina/química , Emodina/isolamento & purificação , Emodina/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos da radiação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos da radiação , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/efeitos da radiação , Líquens/química , Líquens/metabolismo , Luz , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/isolamento & purificação , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Espectrofotometria Ultravioleta , Superóxidos/química , Superóxidos/metabolismo , Raios Ultravioleta , Células Vero
7.
Nat Prod Commun ; 7(8): 1025-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22978221

RESUMO

The antiviral activity was tested of different polarity extracts, with differing chemical composition, obtained from aerial parts of Heterophyllaea pustulata Hook f. (Rubiaceae) against Herpes Simplex Virus Type I (HSV-1) and Saint Louis Encephalitis Virus (SLEV). The Vero cell line was employed as a host cell for the antiviral assessment of benzene (Ben), ethyl acetate (EtOAc) and ethanol (EtOH) extracts by means of the Neutral Red uptake assay and plaque reduction test. None of the extracts showed antiviral activity against SLEV. Only the extracts (Ben and EtOAc) with a high content of anthraquinones (AQs) inhibited HSV-1 replication, exhibiting Selectivity Index (SI) values of 2.7 and 2.4, respectively. Therefore, these extracts could be good candidates as natural sources for antiviral drug development against HSV-1.


Assuntos
Antivirais/química , Antivirais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rubiaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...