Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Neuroinflammation ; 21(1): 25, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238800

RESUMO

BACKGROUND: Fibromyalgia is characterized by chronic pain, fatigue, and other somatic symptoms. We have recently revealed that proprioceptor hyperactivation induces chronic pain in a rat model of myalgic encephalomyelitis. The present study explores whether similar proprioceptor-induced pain is elicited in a mouse model of fibromyalgia. METHODS: Repeated cold stress (RCS) was used as a fibromyalgia model. Pain behavior was examined using the von Frey test, and neuronal activation was examined immunohistochemically as activating transcription factor (ATF)3 expression. The Atf3:BAC transgenic mouse, in which mitochondria in hyperactivated neurons are specifically labeled by green fluorescent protein, was used to trace the activated neuronal circuit. PLX3397 (pexidartinib) was used for microglial suppression. RESULTS: RCS elicited long-lasting pain in mice. ATF3, a marker of cellular hyperactivity and injury, was expressed in the lumbar dorsal root ganglion (DRG) 2 days after RCS initiation; the majority of ATF3-expressing DRG neurons were tropomyosin receptor kinase C- and/or vesicular glutamate transporter 1-positive proprioceptors. Microglial activation and increased numbers of microglia were observed in the medial part of the nucleus proprius 5 days after RCS initiation, and in the dorsal region of the ventral horn 7 days after RCS. In the ventral horn, only a subset of motor neurons was positive for ATF3; these neurons were surrounded by activated microglia. A retrograde tracer study revealed that ATF3-positive motor neurons projected to the intrinsic muscles of the foot (IMF). Using Atf3:BAC transgenic mice, we traced hyperactivated neuronal circuits along the reflex arc. Green fluorescent protein labeling was observed in proprioceptive DRG neurons and their processes originating from the IMF, as well as in motor neurons projecting to the IMF. Microglial activation was observed along this reflex arc, and PLX3397-induced microglial ablation significantly suppressed pain behavior. CONCLUSION: Proprioceptor hyperactivation leads to local microglial activation along the reflex arc; this prolonged microglial activation may be responsible for chronic pain in the present model. Proprioceptor-induced microglial activation might be the common cause of chronic pain in both the fibromyalgia and myalgic encephalomyelitis models, although the experimental models are different.


Assuntos
Aminopiridinas , Dor Crônica , Síndrome de Fadiga Crônica , Fibromialgia , Pirróis , Camundongos , Ratos , Animais , Dor Crônica/etiologia , Dor Crônica/metabolismo , Fibromialgia/metabolismo , Microglia/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Frio , Modelos Animais de Doenças , Gânglios Espinais/metabolismo
2.
Cell Death Discov ; 10(1): 56, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282096

RESUMO

5' adenosine monophosphate-activated protein kinase-related kinase 5 (ARK5) is involved in mitochondrial ATP production and associated with poor prognosis of multiple myeloma (MM). However, the molecular mechanisms of ARK5 in MM remain largely unknown. This study examined the pathogenic role of ARK5 in mitochondria by using genetically modified isogenic cell clones with or without ARK5 in human myeloma cell lines, KMS-11 and Sachi, which overexpress ARK5. The biallelic knockout of ARK5 (ARK5-KO) inhibited cell proliferation, colony formation, and migration with increased apoptosis. Mitochondrial fusion was enhanced in ARK5-KO cells, unlike in ARK5 wild-type (ARK5-WT) cells, which exhibited increased mitochondrial fission. Furthermore, ARK5-KO cells demonstrated a lower phosphorylated dynamin-related protein 1 at serine 616, higher protein expression of mitofusin-1 (MFN1) and MFN2, optic atrophy 1 with a lower level of ATP, and higher levels of lactate and reactive oxygen species than ARK5-WT cells. Our findings suggest that ARK5-enhanced myeloma cells can survive associated mitochondrial fission and activity. This study first revealed the relationship between ARK5 and mitochondrial morphological dynamics. Thus, our outcomes show novel aspects of mitochondrial biology of ARK5, which can afford a more advanced treatment approach for unfavorable MM expressing ARK5.

3.
Oral Dis ; 30(2): 223-234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36799330

RESUMO

OBJECTIVE: PDZ-binding kinase (PBK) has been reported as a poor prognostic factor and is a promising molecular target for anticancer therapeutics. Here, we aimed to investigate the effect of specific PBK inhibitor OTS514 on the survival of OSCC cells. METHODS: Four OSCC cell lines (HSC-2, HSC-3, SAS, and OSC-19) were used to examine the effect of OTS514 on cell survival and apoptosis. DNA microarray analysis was conducted to investigate the effect of OTS514 on gene expression in OSCC cells. Gene set enrichment analysis was performed to identify molecular signatures related to the antiproliferative effect of OTS514. RESULTS: OTS514 decreased the cell survival of OSCC cells dose-dependently, and administration of OTS514 readily suppressed the HSC-2-derived tumor growth in immunodeficient mice. Treatment with OTS514 significantly increased the number of apoptotic cells and caspase-3/7 activity. Importantly, OTS514 suppressed the expression of E2F target genes with a marked decrease in protein levels of E2F1, a transcriptional factor. Moreover, TP53 knockdown attenuated OTS514-induced apoptosis. CONCLUSION: OTS514 suppressed the proliferation of OSCC cells by downregulating the expression of E2F target genes and induced apoptosis by mediating the p53 signaling pathway. These results highlight the clinical application of PBK inhibitors in the development of molecular-targeted therapeutics against OSCC.


Assuntos
Carcinoma de Células Escamosas , Quinases de Proteína Quinase Ativadas por Mitógeno , Neoplasias Bucais , Quinolonas , Tiofenos , Animais , Camundongos , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Apoptose , Proliferação de Células/genética
4.
FEBS J ; 291(5): 927-944, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009294

RESUMO

There has been a great deal of research on cell division and its mechanisms; however, its processes still have many unknowns. To find novel proteins that regulate cell division, we performed the screening using siRNAs and/or the expression plasmid of the target genes and identified leucine zipper protein 1 (LUZP1). Recent studies have shown that LUZP1 interacts with various proteins and stabilizes the actin cytoskeleton; however, the function of LUZP1 in mitosis is not known. In this study, we found that LUZP1 colocalized with the chromosomal passenger complex (CPC) at the centromere in metaphase and at the central spindle in anaphase and that these LUZP1 localizations were regulated by CPC activity and kinesin family member 20A (KIF20A). Mass spectrometry analysis identified that LUZP1 interacted with death-associated protein kinase 3 (DAPK3), one regulator of the cleavage furrow ingression in cytokinesis. In addition, we found that LUZP1 also interacted with myosin light chain 9 (MYL9), a substrate of DAPK3, and comprehensively inhibited MYL9 phosphorylation by DAPK3. In line with a known role for MYL9 in the actin-myosin contraction, LUZP1 suppression accelerated the constriction velocity at the division plane in our time-lapse analysis. Our study indicates that LUZP1 is a novel regulator for cytokinesis that regulates the constriction velocity of the contractile ring.


Assuntos
Citocinese , Zíper de Leucina , Citocinese/genética , Constrição , Citoesqueleto de Actina , Mitose
5.
PLoS One ; 18(11): e0294146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943774

RESUMO

CRISPR/Cas9 is a powerful genome editing system that has remarkably facilitated gene knockout and targeted knock-in. To accelerate the practical use of CRISPR/Cas9, however, it remains crucial to improve the efficiency, precision, and specificity of genome editing, particularly targeted knock-in, achieved with this system. To improve genome editing efficiency, researchers should first have a molecular assay that allows sensitive monitoring of genome editing events with simple procedures. In the current study, we demonstrate that genome editing events occurring in L1CAM, an X-chromosome gene encoding a cell surface protein, can be readily monitored using flow cytometry (FCM) in multiple human cell lines including neuroblastoma cell lines. The abrogation of L1CAM was efficiently achieved using Cas9 nucleases which disrupt exons encoding the L1CAM extracellular domain, and was easily detected by FCM using anti-L1CAM antibodies. Notably, L1CAM-abrogated cells could be quantified by FCM in four days after transfection with a Cas9 nuclease, which is much faster than an established assay based on the PIGA gene. In addition, the L1CAM-based assay allowed us to measure the efficiency of targeted knock-in (correction of L1CAM mutations) accomplished through different strategies, including a Cas9 nuclease-mediated method, tandem paired nicking, and prime editing. Our L1CAM-based assay using FCM enables rapid and sensitive quantification of genome editing efficiencies and will thereby help researchers improve genome editing technologies.


Assuntos
Edição de Genes , Molécula L1 de Adesão de Célula Nervosa , Humanos , Edição de Genes/métodos , Citometria de Fluxo , Sistemas CRISPR-Cas/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Linhagem Celular
6.
J Wound Care ; 32(Sup10a): S30-S34, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37830845

RESUMO

Despite improvements in treatment methods and outcomes, burns remain one of the principal causes of mortality and morbidity worldwide. Burns involving the hands are estimated to occur in >80% of people with burns. Hand burns have also been associated with long-term social, psychological and physical consequences that can impede a patient's full reintegration to the community and decrease their overall quality of life. Clinically, when the trajectory towards complete re-epithelialisation stalls in deep burn wounds of the hand, skin grafting is indicated, but cosmetic problems often remain. A recent publication highlighted common complications for burns involving the hand such as scar disturbances (26%) and scar contractures (14%). Innovative approaches with the potential to reduce the occurrence of complicating scar disturbances and contractures are sought by healthcare providers specialising in burns. This case report describes a novel approach to wound closure using a topical concentrate of proteolytic enzymes followed by the application of an autologous skin cell suspension. This combination was effective in achieving early and complete re-epithelialisation of a deep burn of the palm of a 28-year-old male patient, while potentially affording a favourable impact on hypertrophic scarring or scar contracture.


Assuntos
Queimaduras , Cicatriz Hipertrófica , Contratura , Masculino , Humanos , Adulto , Cicatrização , Desbridamento/métodos , Qualidade de Vida , Queimaduras/cirurgia , Transplante de Pele/métodos , Cicatriz Hipertrófica/terapia , Contratura/terapia
7.
Cell Death Discov ; 9(1): 257, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479714

RESUMO

Malignant mesothelioma (MMe) is a rare but aggressive malignancy. Although the molecular genetics of MMe is known, including BRCA1-associated protein-1 (BAP1) gene alterations, the prognosis of MMe patients remains poor. Here, we generated BAP1 knockout (BAP1-KO) human mesothelial cell clones to develop molecular-targeted therapeutics based on genetic alterations in MMe. cDNA microarray and quantitative RT-PCR (qRT-PCR) analyses revealed high expression of a calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D) gene in the BAP1-KO cells. CAMK2D was highly expressed in 70% of the human MMe tissues (56/80) and correlated with the loss of BAP1 expression, making it a potential diagnostic and therapeutic target for BAP1-deficient MMe. We screened an anticancer drugs library using BAP1-KO cells and successfully identified a CaMKII inhibitor, KN-93, which displayed a more potent and selective antiproliferative effect against BAP1-deficient cells than cisplatin or pemetrexed. KN-93 significantly suppressed the tumor growth in mice xenografted with BAP1-deficient MMe cells. This study is the first to provide a potential molecular-targeted therapeutic approach for BAP1-deficient MMe.

8.
Cell Rep ; 42(2): 112092, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753421

RESUMO

The relationships between tissue-resident microglia and early macrophages, especially their lineage segregation outside the yolk sac, have been recently explored, providing a model in which a conversion from macrophages seeds microglia during brain development. However, spatiotemporal evidence to support such microglial seeding in situ and to explain how it occurs has not been obtained. By cell tracking via slice culture, intravital imaging, and Flash tag-mediated or genetic labeling, we find that intraventricular CD206+ macrophages, which are abundantly observed along the inner surface of the mouse cerebral wall, frequently enter the pallium at embryonic day 12. Immunofluorescence of the tracked cells show that postinfiltrative macrophages in the pallium acquire microglial properties while losing the CD206+ macrophage phenotype. We also find that intraventricular macrophages are supplied transepithelially from the roof plate. This study demonstrates that the "roof plate→ventricle→pallium" route is an essential path for microglial colonization into the embryonic mouse brain.


Assuntos
Encéfalo , Microglia , Animais , Camundongos , Microglia/metabolismo , Encéfalo/metabolismo , Macrófagos/metabolismo , Fenótipo
9.
Haematologica ; 108(2): 394-408, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36005560

RESUMO

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is an intractable disease and most cases harbor genetic alterations that activate JAK or ABL signaling. The commonest subtype of Ph-like ALL exhibits a CRLF2 gene rearrangement that brings about JAK1/2-STAT5 pathway activation. However, JAK1/2 inhibition alone is insufficient as a treatment, so combinatorial therapies targeting multiple signals are needed. To better understand the mechanisms underlying the insufficient efficacy of JAK inhibition, we explored gene expression changes upon treatment with a JAK1/2 inhibitor (ruxolitinib) and found that elevated BCL6 expression was one such mechanism. Upregulated BCL6 suppressed the expression of TP53 along with its downstream cell cycle inhibitor p21 (CDKN2A) and pro-apoptotic molecules, such as FAS, TNFRSF10B, BID, BAX, BAK, PUMA, and NOXA, conferring cells some degree of resistance to therapy. BCL6 inhibition (with FX1) alone was able to upregulate TP53 and restore the TP53 expression that ruxolitinib had diminished. In addition, ruxolitinib and FX1 concertedly downregulated MYC. As a result, FX1 treatment alone had growth-inhibitory and apoptosis- sensitizing effects, but the combination of ruxolitinib and FX1 more potently inhibited leukemia cell growth, enhanced apoptosis sensitivity, and prolonged the survival of xenografted mice. These findings provide one mechanism for the insufficiency of JAK inhibition for the treatment of CRLF2-rearranged ALL and indicate BCL6 inhibition as a potentially helpful adjunctive therapy combined with JAK inhibition.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Nitrilas , Pirimidinas , Transdução de Sinais , Proteínas Proto-Oncogênicas c-bcl-6
10.
Diabetes ; 71(9): 1902-1914, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35748319

RESUMO

Leptin, a hormone secreted by adipocytes, exhibits therapeutic potential for the treatment of type 1 diabetes (T1D). Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme that negatively regulates leptin receptor signaling. Here, the role of PTP1B in the treatment of T1D was investigated using PTP1B-deficient (knockout [KO]) mice and a PTP1B inhibitor. T1D wild-type (WT) mice induced by streptozotocin showed marked hyperglycemia compared with non-T1D WT mice. KO mice displayed significantly improved glucose metabolism equivalent to non-T1D WT mice, whereas peripheral or central administration of leptin partially improved glucose metabolism in T1D WT mice. Peripheral combination therapy of leptin and a PTP1B inhibitor in T1D WT mice improved glucose metabolism to the same level as non-T1D WT mice. Leptin was shown to act on the arcuate nucleus in the hypothalamus to suppress gluconeogenesis in liver and enhance glucose uptake in both brown adipose tissue and soleus muscle through the sympathetic nervous system. These effects were enhanced by PTP1B deficiency. Thus, treatment of T1D with leptin, PTP1B deficiency, or a PTP1B inhibitor was shown to enhance leptin activity in the hypothalamus to improve glucose metabolism. These findings suggest a potential alternative therapy for T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Leptina , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucose/metabolismo , Homeostase/fisiologia , Leptina/metabolismo , Camundongos , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
11.
Mol Biol Rep ; 49(7): 6241-6248, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35420385

RESUMO

BACKGROUND: Targeted knock-in assisted by the CRISPR/Cas9 system is an advanced technology with promising applications in various research fields including medical and agricultural sciences. However, improvements in the efficiency, precision, and specificity of targeted knock-in are prerequisites to facilitate the practical application of this technology. To improve the efficiency of targeted knock-in, it is necessary to have a molecular system that allows sensitive monitoring of targeted knock-in events with simple procedures. METHODS AND RESULTS: We developed an assay, named CD55 correction assay, with which to monitor CD55 gene correction accomplished by targeted knock-in. To create the reporter clones used in this assay, we initially introduced a 7.7-kb heterozygous deletion covering CD55 exons 2-5, and then incorporated a truncating mutation within exon 4 of the remaining CD55 allele in human cell lines. The resultant reporter clones that lost the CD55 protein on the cell membrane were next transfected with Cas9 constructs along with a donor plasmid carrying wild-type CD55 exon 4. The cells were subsequently stained with fluorescence-labeled CD55 antibody and analyzed by flow cytometry to detect CD55-positive cells. These procedures allow high-throughput, quantitative detection of targeted gene correction events occurring in an endogenous human gene. CONCLUSIONS: The current study demonstrated the utility of the CD55 correction assay to sensitively quantify the efficiency of targeted knock-in. When used with the PIGA correction assay, the CD55 correction assay will help accurately determine the efficiency of targeted knock-in, precluding possible experimental biases caused by cell line-specific and locus-specific factors.

12.
Glia ; 70(6): 1009-1026, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35142399

RESUMO

Elimination of dead or live cells take place in both a healthy and diseased central nervous system (CNS). Dying or dead cells are quickly cleared by phagocytosis for the maintenance of a healthy CNS or for recovery after injury. Live cells or parts thereof, such as the synapses and myelin, are appropriately eliminated by phagocytosis to maintain or refine neural networks during development and adulthood. Microglia, the specific population of resident macrophages in the CNS, are classically considered as primary phagocytes; however, astrocytes have also been highlighted as phagocytes in the last decade. Phagocytic targets and receptors are reported to be mostly common between astrocytes and microglia, which raises the question of how astrocytic phagocytosis differs from microglial phagocytosis, and how these two phagocytic systems cooperate. In this review, we address the consequences of astrocytic phagocytosis, particularly focusing on these elusive points.


Assuntos
Astrócitos , Microglia , Astrócitos/fisiologia , Sistema Nervoso Central/fisiologia , Fagócitos , Fagocitose/fisiologia
13.
J Infect Chemother ; 28(2): 242-247, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34776346

RESUMO

INTRODUCTION: The Tokyo Metropolitan Government (TMG) conducted an external quality assessment (EQA) survey of pathogen nucleic acid amplification tests (NAATs) as a TMG EQA program for SARS-CoV-2 for clinical laboratories in Tokyo. METHODS: We diluted and prepared a standard product manufactured by Company A to about 2,500 copies/mL to make a positive control and distribute it with a negative control. The participants reported the use of the NAATs methods for SARS-CoV-2, the name of the real-time RT-PCR kit, the name of the detection device, the target gene(s), nucleic acid extraction kit, Threshold Cycle value in the case of RT-PCR and the Threshold time value and Differential calculation value in the case of Loop-Mediated Isothermal Amplification (LAMP) method. RESULTS: As a result, 17 laboratories using fully automated equipment and 34 laboratories using the RT-PCR method reported generally appropriate results in this EQA survey. On the other hand, among the laboratories that adopted the LAMP method, there were a plurality of laboratories that judged positive samples to be negative. CONCLUSION: The false negative result is considered to be due to the fact that the amount of virus genome contained in the quality control reagent used this time was below the detection limit of the LAMP method combined with the rapid extraction reagent for influenza virus. On the other hand, false positive results are considered to be due to the non-specific reaction of the NAATs. The EQA program must be continued for the proper implementation of the pathogen NAATs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Laboratórios Clínicos , Governo Local , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral , Sensibilidade e Especificidade , Tóquio
14.
Sci Rep ; 11(1): 22627, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799652

RESUMO

Tandem paired nicking (TPN) is a method of genome editing that enables precise and relatively efficient targeted knock-in without appreciable restraint by p53-mediated DNA damage response. TPN is initiated by introducing two site-specific nicks on the same DNA strand using Cas9 nickases in such a way that the nicks encompass the knock-in site and are located within a homologous region between a donor DNA and the genome. This nicking design results in the creation of two nicks on the donor DNA and two in the genome, leading to relatively efficient homology-directed recombination between these DNA fragments. In this study, we sought to identify the optimal design of TPN experiments that would improve the efficiency of targeted knock-in, using multiple reporter systems based on exogenous and endogenous genes. We found that efficient targeted knock-in via TPN is supported by the use of 1700-2000-bp donor DNAs, exactly 20-nt-long spacers predicted to be efficient in on-target cleavage, and tandem-paired Cas9 nickases nicking at positions close to each other. These findings will help establish a methodology for efficient and precise targeted knock-in based on TPN, which could broaden the applicability of targeted knock-in to various fields of life science.


Assuntos
Sistemas CRISPR-Cas , DNA/análise , RNA Guia de Cinetoplastídeos/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Edição de Genes , Técnicas de Introdução de Genes , Marcação de Genes/métodos , Genes Reporter , Engenharia Genética , Células HCT116 , Recombinação Homóloga , Humanos , Plasmídeos/metabolismo , Recombinação Genética
15.
Biosci Rep ; 41(12)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34750615

RESUMO

Targeted knock-in supported by the CRISPR/Cas systems enables the insertion, deletion, and substitution of genome sequences exactly as designed. Although this technology is considered to have wide range of applications in life sciences, one of its prerequisites for practical use is to improve the efficiency, precision, and specificity achieved. To improve the efficiency of targeted knock-in, there first needs to be a reporter system that permits simple and accurate monitoring of targeted knock-in events. In the present study, we created such a system using the PIGP gene, an autosomal gene essential for GPI-anchor biosynthesis, as a reporter gene. We first deleted a PIGP allele using Cas9 nucleases and then incorporated a truncating mutation into the other PIGP allele in two near-diploid human cell lines. The resulting cell clones were used to monitor the correction of the PIGP mutations by detecting GPI anchors distributed over the cell membrane via flow cytometry. We confirmed the utility of these reporter clones by performing targeted knock-in in these clones via a Cas9 nickase-based strategy known as tandem paired nicking, as well as a common process using Cas9 nucleases, and evaluating the efficiencies of the achieved targeted knock-in. We also leveraged these reporter clones to test a modified procedure for tandem paired nicking and demonstrated a slight increase in the efficiency of targeted knock-in by the new procedure. These data provide evidence for the utility of our PIGP-based assay system to quantify the efficiency of targeted knock-in and thereby help improve the technology of targeted knock-in.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Membrana Celular/genética , Citometria de Fluxo , Proteínas Ligadas por GPI/genética , Técnicas de Introdução de Genes , Genes Reporter , Hexosiltransferases/genética , Proteínas de Membrana/genética , Proteína 9 Associada à CRISPR/metabolismo , Membrana Celular/metabolismo , Proteínas Ligadas por GPI/biossíntese , Regulação da Expressão Gênica , Células HCT116 , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mutação
16.
Neurosci Res ; 173: 54-61, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34157360

RESUMO

Microglia, which migrate into the central nervous system (CNS) during the early embryonic stages, are considered to play various roles in CNS development. However, their embryonic roles are largely unknown, partly due to the lack of an effective microglial ablation system in the embryo. Here, we show a microglial ablation model by injecting diphtheria toxin (DT) into the amniotic fluid of Siglechdtr mice, in which the gene encoding DT receptor is knocked into the microglia-specific gene locus Siglech. We revealed that embryonic microglia were depleted for several days throughout the CNS, including some regions where microglia transiently accumulated, at any embryonic time point from embryonic day 10.5, when microglia colonize the CNS. This ablation system was specific for microglia because CNS-associated macrophages, which are a distinct population from microglia that reside in the CNS interfaces such as meninges, were unaffected. Therefore, this microglial ablation system is highly effective for studying the embryonic functions of microglia.


Assuntos
Sistema Nervoso Central , Microglia , Animais , Modelos Animais de Doenças , Embrião de Mamíferos , Macrófagos , Camundongos
17.
Cell Death Discov ; 7(1): 121, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035227

RESUMO

Internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3) confers poor prognosis and is found in approximately 25% of cases of acute myeloid leukemia (AML). Although FLT3 inhibitors have shown clinical benefit in patients with AML harboring FLT3-ITD, the therapeutic effect is limited. Here, to explore alternative therapeutics, we established a cellular model of monoallelic FLT3ITD/WT cells using the CRISPR-Cas9 system in a human myeloid leukemia cell line, K562. cDNA microarray analysis revealed elevated CD52 expression in K562-FLT3ITD/WT cells compared to K562-FLT3WT/WT cells, an observation that was further confirmed by quantitative real-time-PCR and flow cytometric analyses. The elevated expression of CD52 in K562-FLT3ITD/WT cells was decreased in wild-type FLT3 (FLT3-WT) knock-in K562-FLT3ITD/WT cells. In K562-FLT3ITD/WT cells, a STAT5 inhibitor, pimozide, downregulated CD52 protein expression while an AKT inhibitor, afuresertib, did not affect CD52 expression. Notably, an anti-CD52 antibody, alemtuzumab, induced significant antibody-dependent cell-mediated cytotoxicity (ADCC) in K562-FLT3ITD/WT cells compared to K562-FLT3WT/WT cells. Furthermore, alemtuzumab significantly suppressed the xenograft tumor growth of K562-FLT3ITD/WT cells in severe combined immunodeficiency (SCID) mice. Taken together, our data suggested that genetically modified FLT3-ITD knock-in human myeloid leukemia K562 cells upregulated CD52 expression via activation of STAT5, and alemtuzumab showed an antitumor effect via induction of ADCC in K562-FLT3ITD/WT cells. Our findings may allow establishment of a new therapeutic option, alemtuzumab, to treat leukemia with the FLT3-ITD mutation.

18.
Cell Tissue Res ; 384(1): 49-58, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33433687

RESUMO

The dura mater contains abundant macrophages whose functions remain largely elusive. Recent studies have demonstrated the origin, as well as the gene expression pattern, of dural macrophages (dMΦs). However, their histological features have not been explored yet. In this study, we performed immunohistochemistry and electron microscopy to elucidate their precise morphology, localization, and postnatal development in mice. We found that the morphology, as well as the localization, of dMΦs changed during postnatal development. In neonatal mice, dMΦ exhibited an amoeboid morphology. During postnatal development, their cell bodies elongated longitudinally and became aligned along dural blood vessels. In adulthood, nearly half of the dMΦs aligned along blood vessel networks. However, most of these cells were not directly attached to vessels; pericytes and fibroblasts interposed between dMΦs and vessels. This morphological information may provide further indications for the functional significance of dMΦs.


Assuntos
Imuno-Histoquímica/métodos , Animais , Macrófagos/metabolismo , Masculino , Camundongos
19.
Cell Death Discov ; 6(1): 127, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33298865

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive malignancy of the pleura that is currently incurable due to the lack of an effective early diagnostic method and specific medication. The CDKN2A (p16) and NF2 genes are both frequently mutated in MPM. To understand how these mutations contribute to MPM tumor growth, we generated NF2/p16 double-knockout (DKO) cell clones using human MeT-5A and HOMC-B1 mesothelial cell lines. Cell growth and migration activities were significantly increased in DKO compared with parental cells. cDNA microarray analysis revealed differences in global gene expression profiles between DKO and parental cells. Quantitative PCR and western blot analyses showed upregulation of CD24 concomitant with increased phosphorylation of AKT, p70S6K, and c-Jun in DKO clones. This upregulation was abrogated by exogenous expression of NF2 and p16. CD24 knockdown in DKO cells significantly decreased TGF-ß1 expression and increased expression of E-cadherin, an epithelial-mesenchymal transition marker. CD24 was highly expressed in human mesothelioma tissues (28/45 cases, 62%) and associated with the loss of NF2 and p16. Public data analysis revealed a significantly shorter survival time in MPM patients with high CD24 gene expression levels. These results strongly indicate the potential use of CD24 as a prognostic marker as well as a novel diagnostic and therapeutic target for MPM.

20.
Neurochem Int ; 141: 104878, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049336

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) forms a receptor complex with DNAX-activating protein of 12 kDa (DAP12) on the microglial plasma membrane. A wide variety of protein and non-protein ligands, including lipids and DNA, can bind to TREM2, inducing the activation of microglia via DAP12. Both Trem2 and Dap12 have been identified as causative genes for Nasu-Hakola disease, which causes presenile dementia in association with bone cysts. Furthermore, TREM2/DAP12 signaling represents an essential inducer of the activated microglial phenotype in neuronal diseases, including Alzheimer's disease. Therefore, most previous studies examining TREM2/DAP12 have focused on their roles in microglia under pathological conditions. However, a growing body of evidence has demonstrated the involvement of TREM2/DAP12 signaling in the regulation of physiological functions in microglia. Accordingly, by examining the importance of TREM2/DAP12 in the regulation of microglial activity during development, homeostasis, and aging in the brain, this review elucidates the roles played by this complex in the healthy brain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Envelhecimento/genética , Envelhecimento/fisiologia , Encéfalo/crescimento & desenvolvimento , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Microglia/fisiologia , Receptores Imunológicos/genética , Animais , Encéfalo/fisiologia , Regulação da Expressão Gênica , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...