Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404933, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772695

RESUMO

Biochemical systems make use of out-of-equilibrium polymers generated under kinetic control. Inspired by these systems, many abiotic supramolecular polymers driven by chemical fuel reactions have been reported. Conversely, polymers based on transient covalent bonds have received little attention, even though they have the potential to complement supramolecular systems by generating transient structures based on stronger bonds and by offering a straightforward tuning of reaction kinetics. In this study, we show that simple aqueous dicarboxylic acids give poly(anhydrides) when treated with the carbodiimide EDC. Transient covalent polymers with molecular weights exceeding 15,000 are generated which then decompose over the course of hours to weeks. Disassembly kinetics can be controlled using simple substituent effects in the monomer design. The impact of solvent polarity, carbodiimide concentration, temperature, pyridine concentration, and monomer concentration on polymer properties and lifetimes has been investigated. The results reveal substantial control over polymer assembly and disassembly kinetics, highlighting the potential for fine-tuned kinetic control in nonequilibrium polymerization systems.

2.
Angew Chem Int Ed Engl ; 63(20): e202400843, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38517330

RESUMO

Recent work has demonstrated that temporary crosslinks in polymer networks generated by chemical "fuels" afford materials with large, transient changes in their mechanical properties. This can be accomplished in carboxylic-acid-functionalized polymer hydrogels using carbodiimides, which generate anhydride crosslinks with lifetimes on the order of minutes to hours. Here, the impact of the polymer network architecture on the mechanical properties of transiently crosslinked materials was explored. Single networks (SNs) were compared to interpenetrated networks (IPNs). Notably, semi-IPN precursors that give IPNs on treatment with carbodiimide give much higher fracture energies (i.e., resistance to fracture) and superior resistance to compressive strain compared to other network architectures. A precursor semi-IPN material featuring acrylic acid in only the free polymer chains yields, on treatment with carbodiimide, an IPN with a fracture energy of 2400 J/m2, a fourfold increase compared to an analogous semi-IPN precursor that yields a SN. This resistance to fracture enables the formation of macroscopic complex cut patterns, even at high strain, underscoring the pivotal role of polymer architecture in mechanical performance.

3.
Angew Chem Int Ed Engl ; 63(21): e202315200, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38546541

RESUMO

Dispersity (Ð or Mw/Mn) is an important parameter in material design and as such can significantly impact the properties of polymers. Here, polymer networks with independent control over the molecular weight and dispersity of the linear chains that form the material are developed. Using a RAFT polymerization approach, a library of polymers with dispersity ranging from 1.2-1.9 for backbone chain-length (DP) 100, and 1.4-3.1 for backbone chain-length 200 were developed and transformed to networks through post-polymerization crosslinking to form disulfide linkers. The tensile, swelling, and adhesive properties were explored, finding that both at DP 100 and DP 200 the swelling ratio, tensile strength, and extensibility were superior at intermediate dispersity (1.3-1.5 for DP 100 and 1.6-2.1 for DP 200) compared to materials with either substantially higher or lower dispersity. Furthermore, adhesive properties for materials with chains of intermediate dispersity at DP 200 revealed enhanced performance compared to the very low or high dispersity chains.

4.
Chem Sci ; 14(46): 13419-13428, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033899

RESUMO

Although dispersity has been demonstrated to be instrumental in determining many polymer properties, current synthetic strategies predominantly focus on tailoring the dispersity of linear polymers. In contrast, controlling the primary chain dispersity in network polymers is much more challenging, in part due to the complex nature of the reactions, which has limited the exploration of properties and applications. Here, a one-step method to prepare networks with precisely tuned primary chain dispersity is presented. By using an acid-switchable chain transfer agent and a degradable crosslinker in PET-RAFT polymerization, the in situ crosslinking of the propagating polymer chains was achieved in a quantitative manner. The incorporation of a degradable crosslinker, not only enables the accurate quantification of the various primary chain dispersities, post-synthesis, but also allows the investigation and comparison of their respective degradation profiles. Notably, the highest dispersity networks resulted in a 40% increase in degradation time when compared to their lower dispersity analogues, demonstrating that primary chain dispersity has a substantial impact on the network degradation rate. Our experimental findings were further supported by simulations, which emphasized the importance of higher molecular weight polymer chains, found within the high dispersity materials, in extending the lifetime of the network. This methodology presents a new and promising avenue to precisely tune primary chain dispersity within networks and demonstrates that polymer dispersity is an important parameter to consider when designing degradable materials.

5.
Soft Matter ; 19(26): 4964-4971, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37342008

RESUMO

Repairable adhesive elastomers are emerging materials employed in compelling applications such as soft robotics, biosensing, tissue regeneration, and wearable electronics. Facilitating adhesion requires strong interactions, while self-healing requires bond dynamicity. This contrast in desired bond characteristics presents a challenge in the design of healable adhesive elastomers. Furthermore, 3D printability of this novel class of materials has received limited attention, restricting the potential design space of as-built geometries. Here, we report a series of 3D-printable elastomeric materials with self-healing ability and adhesive properties. Repairability is obtained using Thiol-Michael dynamic crosslinkers incorporated into the polymer backbone, while adhesion is facilitated with acrylate monomers. Elastomeric materials with excellent elongation up to 2000%, self-healing stress recovery >95%, and strong adhesion with metallic and polymeric surfaces are demonstrated. Complex functional structures are successfully 3D printed using a commercial digital light processing (DLP) printer. Shape-selective lifting of low surface energy poly(tetrafluoroethylene) objects is achieved using soft robotic actuators with interchangeable 3D-printed adhesive end effectors, wherein tailored contour matching leads to increased adhesion and successful lifting capacity. The demonstrated utility of these adhesive elastomers provides unique capabilities to easily program soft robot functionality.

6.
Macromol Rapid Commun ; 44(14): e2300094, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191104

RESUMO

ortho-Phenylenes are one of the simplest classes of aromatic foldamers, adopting helical geometries because of aromatic stacking interactions. The folding and misfolding of ortho-phenylenes are slow on the NMR timescale at or below room temperature, allowing detection of folding states using 1 H NMR spectroscopy. Herein, an ortho-phenylene hexamer is coupled with a RAFT chain transfer agent (CTA) on each repeat unit. A variety of acrylic monomers are polymerized onto the CTA-functionalized ortho-phenylene using PET-RAFT to yield functionalized star polymers with ortho-phenylene cores. The steric bulk of the acrylate monomer units as well as the chain length of each arm of the star polymer is varied. 1 H NMR spectroscopy shows that the folding of the ortho-phenylenes do not vary, providing a robust helical core for star polymer systems.


Assuntos
Polímeros , Tomografia por Emissão de Pósitrons , Polimerização , Polímeros/química , Espectroscopia de Ressonância Magnética
7.
J Am Chem Soc ; 145(9): 5553-5560, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848549

RESUMO

Carbodiimide-fueled anhydride bond formation has been used to enhance the mechanical properties of permanently crosslinked polymer networks, giving materials that exhibit transitions from soft gels to covalently reinforced gels, eventually returning to the original soft gels. Temporary changes in mechanical properties result from a transient network of anhydride crosslinks, which eventually dissipate by hydrolysis. Over an order of magnitude increase in the storage modulus is possible through carbodiimide fueling. The time-dependent mechanical properties can be modulated by the concentration of carbodiimide, temperature, and primary chain architecture. Because the materials remain rheological solids, new material functions such as temporally controlled adhesion and rewritable spatial patterns of mechanical properties have been realized.

8.
J Am Chem Soc ; 145(3): 1906-1915, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626247

RESUMO

In controlled radical polymerization, oxygen is typically regarded as an undesirable component resulting in terminated polymer chains, deactivated catalysts, and subsequent cessation of the polymerization. Here, we report an unusual atom transfer radical polymerization whereby oxygen favors the polymerization by triggering the in situ transformation of CuBr/L to reactive superoxido species at room temperature. Through a superoxido ARGET-ATRP mechanism, an order of magnitude faster polymerization rate and a rapid and complete initiator consumption can be achieved as opposed to when unoxidized CuBr/L was instead employed. Very high end-group fidelity has been demonstrated by mass-spectrometry and one-pot synthesis of block and multiblock copolymers while pushing the reactions to reach near-quantitative conversions in all steps. A high molecular weight polymer could also be targeted (DPn = 6400) without compromising the control over the molar mass distributions (D < 1.20), even at an extremely low copper concentration (4.5 ppm). The versatility of the technique was demonstrated by the polymerization of various monomers in a controlled fashion. Notably, the efficiency of our methodology is unaffected by the purity of the starting CuBr, and even a brown highly-oxidized 15-year-old CuBr reagent enabled a rapid and controlled polymerization with a final dispersity of 1.07, thus not only reducing associated costs but also omitting the need for rigorous catalyst purification prior to polymerization.

9.
Eur Polym J ; 184: 111767, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36531158

RESUMO

The global spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) has caused the loss of many human lives and severe economic losses. SARS-CoV-2 mediates its infection in humans via the spike glycoprotein. The receptor binding domain of the SARS-CoV-2 spike protein binds to its cognate receptor, angiotensin converting enzyme-2 (ACE2) to initiate viral entry. In this study, we examine how polymer modification of the spike protein receptor binding domain impacts binding to ACE2. The horseradish peroxidase conjugated receptor binding domain was modified with a range of polymers including hydrophilic N,N-dimethylacrylamide, hydrophobic N-isopropylacrylamide, cationic 3-(N,N-dimethylamino)propylacrylamide, and anionic 2-acrylamido-2-methylpropane sulfonic acid polymers. The effect of polymer chain length was observed using N,N-dimethylacrylamide polymers with degrees of polymerization of 5, 10 and 25. Polymer conjugation of the receptor binding domain significantly reduced the interaction with ACE2 protein, as determined by an enzyme-linked immunosorbent assay. Stability analysis showed that these conjugates remained highly stable even after seven days incubation at physiological temperature. Hence, this study provides a detailed view of the effect specific type of modification using a library of polymers with different functionalities in interrupting RBD-ACE2 interaction.

10.
Biomacromolecules ; 23(10): 4097-4109, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36130239

RESUMO

The thermophilic cellulase Cel5a from Fervidobacterium nodosum (FnCel5a) was conjugated with neutral, cationic, and anionic polymers of increasing molecular weights. The enzymatic activity toward an anionic soluble cellulose derivative, thermal stability, and functional chemical stability of these bioconjugates were investigated. The results suggest that increasing polymer chain length for polymers compatible with the substrate enhances the positive impact of polymer conjugation on enzymatic activity. Activity enhancements of nearly 100% were observed for bioconjugates with N,N-dimethyl acrylamide (DMAm) and N,N-dimethyl acrylamide-2-(N,N-dimethylamino)ethyl methacrylate (DMAm/DMAEMA) due to proposed polymer-substrate compatibility enabled by potential noncovalent interactions. Double conjugation of two functionally distinct polymers to wild-type and mutated FnCel5a using two conjugation methods was achieved. These doubly conjugated bioconjugates exhibited similar thermal stability to the unmodified wild-type enzyme, although enzymatic activity initially gained from conjugation was lost, suggesting that chain length may be a better tool for bioconjugate activity modulation than double conjugation.


Assuntos
Celulase , Polímeros , Acrilamidas , Celulase/química , Celulase/genética , Celulose , Metacrilatos/química , Peso Molecular , Polímeros/química
11.
ACS Macro Lett ; 11(9): 1156-1161, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069541

RESUMO

Photoinduced electron/energy transfer (PET)-reversible addition-fragmentation chain transfer polymerization (RAFT) and conventional photoinitiated RAFT were used to synthesize polymer networks. In this study, two different metal catalysts, namely, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) and zinc tetraphenylporphyrin (ZnTPP), were selected to generate two different catalytic pathways, one with Ir(ppy)3 proceeding through an energy-transfer pathway and one with ZnTPP proceeding through an electron-transfer pathway. These PET-RAFT systems were contrasted against a conventional photoinitated RAFT process. Mechanically robust materials were generated. Using bulk swelling ratios and degradable cross-linkers, the homogeneity of the networks was evaluated. Especially at high primary chain length and cross-link density, the PET-RAFT systems generated more uniform networks than those made by conventional RAFT, with the electron transfer-based ZnTPP giving superior results to those of Ir(ppy)3. The ability to deactivate radicals either by RAFT exchange or reversible coupling in PET RAFT was proposed as the mechanism that gave better control in PET-RAFT systems.


Assuntos
Irídio , Polímeros , Transferência de Energia , Metaloporfirinas
12.
Angew Chem Int Ed Engl ; 61(50): e202206938, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167937

RESUMO

Dynamic bonds introduce unique properties such as self-healing, recyclability, shape memory, and malleability to polymers. Significant efforts have been made to synthesize a variety of dynamic linkers, creating a diverse library of materials. In addition to the development of new dynamic chemistries, fine-tuning of dynamic bonds has emerged as a technique to modulate dynamic properties. This Review highlights approaches for controlling the timescales of dynamic bonds in polymers. Particularly, eight dynamic bonds are considered, including urea/urethanes, boronic esters, Thiol-Michael exchange, Diels-Alder adducts, transesterification, imine bonds, coordination bonds, and hydrogen bonding. This Review emphasizes how structural modifications and external factors have been used as tools to tune the dynamic character of materials. Finally, this Review proposes strategies for tailoring the timescales of dynamic bonds in polymer materials through both kinetic effects and modulating bond thermodynamics.

13.
ACS Omega ; 7(33): 29125-29134, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033717

RESUMO

With sustainability at the forefront of material research, recyclable polymers, such as vitrimers, have garnered increasing attention since their introduction in 2011. In addition to a traditional glass-transition temperature (T g), vitrimers have a second topology freezing temperature (T v) above which dynamic covalent bonds allow for rapid stress relaxation, self-healing, and shape reprogramming. Herein, we demonstrate the self-healing, shape memory, and shape reconfigurability properties as a function of experimental conditions, aiming toward recyclability and increased useful lifetime of the material. Of interest, we report the influence of processing conditions, which makes the material vulnerable to degradation. We report a decreased crosslink density with increased thermal cycling and compressive stress. Furthermore, we demonstrate that shape reconfigurability and self-healing are enhanced with increasing compressive stress and catalyst concentration, while their performance as a shape memory material remains unchanged. Though increasing the catalyst concentration, temperature, and compressive stress clearly enhances the recovery performance of vitrimers, we must emphasize its trade-off when considering the material degradation reported here. While vitrimers hold great promise as structural materials, it is vital to understand how experimental parameters impact their properties, stability, and reprocessability before vitrimers reach their true potential.

14.
Anal Biochem ; 647: 114692, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35461801

RESUMO

Despite the important role of membrane proteins in biological function and physiology, studying them remains challenging because of limited biomimetic systems for the protein to remain in its native membrane environment. Cryo electron microscopy (Cryo-EM) is emerging as a powerful tool for analyzing the structure of membrane proteins. However, Cryo-EM and other membrane protein analyses are better studied in a native lipid bilayer. Although traditional, mimetic systems have disadvantages that limit their use in the study of membrane proteins. As an alternative, styrene-maleic acid copolymers are used to form nanoparticles with POPC:POPG lipids. Traditional characterization of these styrene maleic acid lipid nanoparticles (SMALPs) includes dynamic light scattering (DLS), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM). In this study a new method was developed that utilizes SMALPs using a styrene-maleic acid copolymer (SMA) thin film on a TEM grid, acting as a substrate. By directly adding POPC:POPG lipid vesicles to the SMA coated grid SMALPs can be formed, visualized, and characterized by TEM without the need to make them in solution prior to imaging. We envision these functionalized grids could aid in single particle specimen preparation, increasing the efficiency of structural biology and biophysical techniques such as Cryo-EM.


Assuntos
Maleatos , Nanopartículas , Lipossomos , Maleatos/química , Proteínas de Membrana/química , Nanopartículas/química
15.
Chem Commun (Camb) ; 58(37): 5590-5593, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35441618

RESUMO

Polymer networks crosslinked with spring-like ortho-phenylene (oP) foldamers were developed. NMR analysis indicated the oP crosslinkers were well-folded. Polymer networks with oP-based crosslinkers showed enhanced energy dissipation and elasticity compared to divinylbenzene crosslinked networks. The energy dissipation was attributed to the strain-induced reversible unfolding of the oP units. Energy dissipation increased with the number of helical turns in the foldamer.


Assuntos
Polímeros , Espectroscopia de Ressonância Magnética , Polímeros/química
16.
Bioconjug Chem ; 32(11): 2447-2456, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730954

RESUMO

Site-specific conjugation to cysteines of proteins often uses ester groups to link maleimide or alkene groups to polymers. However, the ester group is susceptible to hydrolysis, potentially losing the benefits gained through bioconjugation. Here, we present a simple conjugation strategy that utilizes the amide bond stability of traditional 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide coupling while introducing site specificity. Hydrolytically stable maleimide-end-functionalized polymers for site-specific conjugation to free cysteines of proteins were synthesized using reversible addition-fragmentation chain-transfer (RAFT) polymerization. The alpha terminus of the polymers was amidated with a furan-protected aminoethyl maleimide using carbodiimide-based chemistry. Finally, the maleimide was exposed by a retro Diels-Alder reaction to yield the maleimide group, allowing for thiol-maleimide click chemistry for bioconjugation. A thermophilic cellulase from Fervidobacterium nodosum (FnCel5a) was conjugated using various strategies, including random 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling, site-specific hydroxyethyl maleimide (HEMI) end-functionalized coupling, hydroxyethyl acrylate (HEA) end-functionalized coupling, and amidoethyl maleimide (AEMI) end-functionalized coupling. Only the polymers conjugated by EDC and AEMI remained conjugated a week after attachment. This indicates that hydrolytically stable amide-based maleimides are an important bioconjugation strategy for conjugates that require long-term stability, while esters are better suited for systems that require debonding of polymers over time.


Assuntos
Polímeros
17.
J Am Chem Soc ; 143(42): 17769-17777, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34662103

RESUMO

Reversible addition-fragmentation chain transfer (RAFT) polymerization is one of the most powerful reversible deactivation radical polymerization (RDRP) processes. Rate retardation is prevalent in RAFT and occurs when polymerization rates deviate from ideal conventional radical polymerization kinetics. Herein, we explore beyond what was initially thought to be the culprit of rate retardation: dithiobenzoate chain transfer agents (CTA) with more active monomers (MAMs). Remarkably, polymerizations showed that rate retardation occurs in systems encompassing the use of trithiocarbonates and xanthates CTAs with varying monomeric activities. Both the simple slow fragmentation and intermediate radical termination models show that retardation of all these systems can be described by using a single relationship for a variety of monomer reactivity and CTAs, suggesting rate retardation is a universal phenomenon of varying severity, independent of CTA composition and monomeric activity level.

18.
Macromol Chem Phys ; 222(14)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34421281

RESUMO

Protein-polymer bioconjugates present a way to make enzymes more efficient and robust for industrial and medicinal applications. While much work has focused on mono-functional conjugates, i.e. conjugates with one type of polymer attached such as poly(ethylene glycol) or poly(N-isopropylacrylamide), there is a practical interest in gaining additional functionality by synthesizing well-defined bifunctional conjugates in a hetero-arm star copolymer architecture with protein as the core. Using ubiquitin as a model protein, a synthetic scheme was developed to attach two different polymers (OEOMA and DMAm) directly to the protein surface, using orthogonal conjugation chemistries and grafting-from by photochemical living radical polymerization techniques. The additional complexity arising from attempts to selectively modify multiple sites led to decreased polymerization performance and indicates that ICAR-ATRP and RAFT are not well-suited to bifunctional bioconjugates applications. Nonetheless, the polymerization conditions preserve the native fold of the ubiquitin and enable production of a hetero-arm star protein-polymer bioconjugate.

19.
ACS Appl Mater Interfaces ; 13(24): 28870-28877, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124888

RESUMO

Advances in materials, designs, and controls are propelling the field of soft robotics at an incredible rate; however, current methods for prototyping soft robots remain cumbersome and struggle to incorporate desirable geometric complexity. Herein, a vat photopolymerizable self-healing elastomer system capable of extreme elongations up to 1000% is presented. The material is formed from a combination of thiol/acrylate mixed chain/step-growth polymerizations and uses a combination of physical processes and dynamic-bond exchange via thioethers to achieve full self-healing capacity over multiple damage/healing cycles. These elastomers can be three dimensional (3D) printed with modular designs capable of healing together to form highly complex and large functional soft robots. Additionally, these materials show reprogrammable resting shapes and compatibility with self-healing liquid metal electronics. Using these capabilities, subcomponents with multiple internal channel systems were printed, healed together, and combined with functional liquid metals to form a high-wattage pneumatic switch and a humanoid-scale soft robotic gripper. The combination of 3D printing and self-healing elastomeric materials allows for facile production of support-free parts with extreme complexity, resulting in a paradigm shift for the construction of modular soft robotics.

20.
Macromol Rapid Commun ; 42(18): e2100070, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33960058

RESUMO

Covalent adaptable networks (CANs) based on the thiol-Michael (TM) linkages can be thermal and pH responsive. Here, a new vinyl-sulfone-based thiol-Michael crosslinker is synthesized and incorporated into acrylate-based CANs to achieve stable materials with dynamic properties. Because of the reversible TM linkages, excellent temperature-responsive re-healing and malleability properties are achieved. In addition, for the first time, a photoresponsive coumarin moiety is incorporated with TM-based CANs to introduce light-mediated reconfigureability and postpolymerization crosslinking. Overall, these materials can be on demand dynamic in response to heat and light but can retain mechanical stability at ambient condition.


Assuntos
Temperatura Alta , Compostos de Sulfidrila , Cumarínicos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...