Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 891: 164384, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271398

RESUMO

Concentration-discharge relationships are widely used to understand the hydrological processes controlling river water chemistry. This study investigates how hydrological processes affect radionuclide (137Cs and 90Sr) concentrations in surface water in headwater catchments within the Chornobyl Exclusion Zone (ChEZ) in Ukraine. In the flat wetland catchments, the depth of the saturated soil layer changes little throughout the year, but changes in the saturated soil surface area during snowmelt and immediately after rainfall affect water chemistry by changing the opportunities for contact between the surface water and the soil surface. On the other hand, in the slope catchments where there are few wetlands, the water chemistry of river water is governed by changes in the relative contributions of "shallow water" and "deep water" due to changes in the catchment water supply pathways feeding the rivers. In this study, no correlations were observed between dissolved or suspended 137Cs concentrations and either discharge rates or competitive cations, but the solid-liquid ratio of 137Cs was found to be significantly and negatively correlated with water temperature. However, 90Sr concentrations in surface water were found to be strongly related to the water pathways for each of the catchments. Moreover, contact between the surface water and the soil surface and changes in the relative contributions of shallow and deep waters to stream water were correlated with changes in 90Sr concentrations in surface water in wetland and slope catchments, respectively. The study concludes that 90Sr in rivers inside the ChEZ are strongly affected by the water pathways in headwater catchments. Additional studies will be necessary to clarify the details of sorption/desorption reactions.

2.
J Environ Radioact ; 258: 107103, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36599216

RESUMO

To elucidate 137Cs contamination levels and mechanisms of fish inhabiting river and pond environments near the Fukushima Dai-ichi Nuclear Power Plant, 137Cs activity concentrations in fish (15 species, n = 164) and water collected from Maeda River (3.3-8.9 km from the plant) and Shimofukazawa Pond (2.9 km) in 2017 were analyzed. Also, an 8-week rearing experiment using Japanese dace Pseudaspius hakonensis fed on non-contaminated pellets and the pond water (mean 137Cs concentration of 2.0 Bq/L) was conducted to evaluate 137Cs accumulation from water to fish. The 137Cs concentrations in Japanese dace, the only species collected throughout five sampling sites from estuarine to upstream areas in Maeda River, were found to be correlated with ambient air dose rates and fish size, exhibiting large variations (16.5-2.6×103 Bq/kg-wet). By contrast, dissolved 137Cs in river waters increased from the upper to lower course (0.025-0.28 Bq/L), which caused large variations of the water-to-body concentration ratio (CR) in Japanese dace (60.0-35700 L/kg-wet). These CRs (geometric mean of 3670 L/kg-wet) were much higher than the steady-state CR of reared fish (9.7 L/kg-wet), indicating that river fish uptake 137Cs mainly from prey items from aquatic and riparian zones, rather than from water. Statistically significant negative correlations between K+ concentrations in water and river fish CRs were detected, resulting in the decreasing trend of CRs from upstream to estuarine areas. These results suggest that the large heterogeneity of air dose rates, K+ concentration, and estuarine processes in brackish water habitats, in association with the feeding habit and size effect in fish, can engender wide variation of 137Cs concentrations and CRs of river fish along a river course. In contrast, 137Cs concentrations in pond fish (4.3-14.6 kBq/kg-wet) were higher than in river fish. The CRs of pond fish were constantly high but the range was smaller (1010-3440 L/kg-wet) with larger values in fish of higher trophic levels. These findings suggest that biomagnification within a pond was inferred as the main cause of 137Cs contamination of pond fish.


Assuntos
Cipriniformes , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Radioatividade , Poluentes Radioativos da Água , Animais , Lagoas , Centrais Nucleares , Radioisótopos de Césio/análise , Água , Poluentes Radioativos da Água/análise , Japão
3.
Toxics ; 10(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36287858

RESUMO

In the wake of Chernobyl and Fukushima accidents, radiocesium has become a radionuclide of most environmental concern. The ease with which this radionuclide moves through the environment and is taken up by plants and animals is governed by its chemical forms and site-specific environmental characteristics. Distinctions in climate and geomorphology, as well as 137Cs speciation in the fallout, result in differences in the migration rates of 137Cs in the environment and rates of its natural attenuation. In Fukushima areas, 137Cs was strongly bound to soil and sediment particles, with its bioavailability being reduced as a result. Up to 80% of the deposited 137Cs on the soil was reported to be incorporated in hot glassy particles (CsMPs) insoluble in water. Disintegration of these particles in the environment is much slower than that of Chernobyl-derived fuel particles. The higher annual precipitation and steep slopes in Fukushima-contaminated areas are conducive to higher erosion and higher total radiocesium wash-off. Among the common features in the 137Cs behavior in Chernobyl and Fukushima are a slow decrease in the 137Cs activity concentration in small, closed, and semi-closed lakes and its particular seasonal variations: increase in the summer and decrease in the winter.

4.
Sci Total Environ ; 821: 153408, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35090916

RESUMO

This study presents the temporal variations in riverine 137Cs concentrations and fluxes to the ocean during high-flow events in three coastal river catchments contaminated by the Fukushima Daiichi Nuclear Power Plant accident. River water samples were collected at points downstream in the Niida, Ukedo, and Takase Rivers during three high-flow events that occurred in 2019-2020. Variations in both the dissolved and particulate 137Cs concentrations appeared to reflect the spatial pattern of the 137Cs inventory in the catchments, rather than variations in physico-chemical properties of water and suspended solid. Negative relationships between the 137Cs concentration and δ15N in suspended solid were found in all rivers during the intense rainfall events, suggesting an increased contribution of sediment from forested areas to the elevation of particulate 137Cs concentration. The 137Cs flux ranged from 0.33 to 19 GBq, depending on the rainfall erosivity. The particulate 137Cs fluxes from the Ukedo River were relatively low compared with the other two rivers and were attributed to the effect of the Ogaki Dam reservoir upstream. The percentage of 137Cs desorbed in seawater relative to 137Cs in suspended solids ranged from 2.8% to 6.6% and tended to be higher with a higher fraction of exchangeable 137Cs. The estimated potential release of 137Cs desorbed from suspended solids to the ocean was 0.022-0.57 GBq, and its ratio to the direct flux of dissolved 137Cs was 0.12-6.2. Episodic sampling during high-flow events demonstrated that the particulate 137Cs flux depends on catchment characteristics and controls 137Cs transfer to the ocean.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Japão , Poluentes Radioativos da Água/análise
5.
Environ Res ; 206: 112307, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34756914

RESUMO

Radionuclide depth distribution in bottom sediments in deep-water zones of dam reservoirs, where no sediment mixing occurs, can be used to reconstruct time changes in particulate activity concentrations of radionuclides strongly bound to bottom sediments. This approach was used to analyze the 137Cs concentration profile in a bottom sediment core collected from Ogaki dam reservoir on the Ukedo River in the Fukushima Dai-ichi nuclear power plant contaminated zone in October 2019. The derived 137Cs particulate concentrations provided a basis for estimating the dissolved concentration and its temporal trend in the Ukedo River, using the mean value of the apparent 137Cs distribution coefficient. The reconstructed particulate and dissolved 137Cs concentrations and their temporal trends are consistent with monitoring data. The annual mean particulate and dissolved 137Cs wash-off ratios were also calculated for the period of eight years after the accident. Interestingly, the particulate 137Cs wash-off ratios for the Ukedo River at Ogaki dam were found to be similar to those for the Pripyat River at Chernobyl in the same time period after the accident, while the dissolved 137Cs wash-off ratios in the Ukedo River were an order of magnitude lower than the corresponding values in the Pripyat River. Both the particulate and dissolved 137Cs wash-off ratios in the Ukedo River declined faster during the first eight years after the FDNPP accident than predicted by the diffusional model, most likely, due to greater natural attenuation and, to some extent, remediation measures implemented on the catchments in Fukushima.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Radioisótopos de Césio , Japão , Centrais Nucleares , Rios , Poluentes Radioativos da Água/análise
6.
Chemosphere ; 281: 130751, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34023762

RESUMO

Desorption of radiocesium (137Cs) from riverine particles into seawater strongly influences 137Cs concentrations in coastal seawater. This process is important for quantifying the input of radionuclides to marine environments. Here we quantify the particulate 137Cs flux from the Abukuma River, Japan, during typhoon Hagibis and following typhoons in 2019 and estimate the resulting increased dissolved 137Cs levels in coastal seawater. Particulate 137Cs export flux, 1.1 × 1012 Bq, from the Abukuma River during the 4-day period of typhoon Hagibis (12-15 October 2019) equaled two-thirds of the annual flux during 2012-2015, the period of high 137Cs levels following the Fukushima Daiichi Nuclear Power Plant accident. The flux of the desorbed fraction from the Abukuma River during typhoon Hagibis was 0.061-0.12 × 1012Bq, and its daily flux to the surrounding coastal seawater (1.5-3.0 × 1010 Bq/d) was one to two orders of magnitude greater than the estimated input to the coastal seawater during the pre-typhoon period (1.3× 108-1.0 × 109 Bq/d). Simulated results suggest that the massive influx of riverine particles and subsequent desorption of 137Cs increased dissolved 137Cs levels in the coastal seawater by an order of magnitude, from 3.3 mBq/L (pre-typhoon level) to 45-126 mBq/L. This found pathway opens up new scenarios involving radionuclide dynamics in the boundary area of river-sea system.


Assuntos
Tempestades Ciclônicas , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Inundações , Japão , Rios , Água , Poluentes Radioativos da Água/análise
7.
Chemosphere ; 265: 129058, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33250230

RESUMO

This study analyzes the 137Cs behavior in the ponds of Okuma Town from 2015 to 2019 in the Fukushima Dai-ichi nuclear power plant (FDNPP) exclusion zone. A decline in both particulate and dissolved 137Cs activity concentrations was revealed. The decline rate constants for the particulate 137Cs activity concentration were found to be higher than for the dissolved 137Cs activity concentration. In terms of seasonality the dissolved 137Cs concentrations were higher from June to October, depending on the specific pond and year, most likely due to temperature dependence of 137Cs desorption from frayed edge sites of micaceous clay minerals. The apparent Kd(137Cs) in the studied ponds, in absolute value, appeared to be much higher than that for closed and semi-closed lakes of the Chernobyl contaminated area; however, these were comparable to the values characteristic of the rivers and reservoirs of the FDNPP contaminated area. The apparent Kd(137Cs) in the suspended sediment-water system was observed to decrease over time. It was hypothesized that this trend was associated with the decomposition of glassy hot particles. Relying on the theory of selective sorption and fixation, the exchangeable radiocesium interception potential, RIPex(K) was estimated using data on 137Cs speciation in the surface bottom-sediment layer and its distribution in the sediment-water system. For the studied ponds, RIPex(K) was on the average 2050 mEq/kg, which is within the range of values measured in laboratory studies reported in the literature.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Japão , Centrais Nucleares , Lagoas , Poluentes Radioativos da Água/análise
8.
Sci Rep ; 10(1): 9818, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555467

RESUMO

Strontium-90 (90Sr) is the major long-lived radionuclide derived from the Chernobyl accident, and is still being detected in the heavily contaminated catchments of the Chernobyl Exclusion Zone. This study examines the long-term decrease in the dissolved-phase 90Sr concentration and the concentration-discharge (90Sr-Q) relationship in stream water since the accident. We show that the slow decline in 90Sr follows a double-exponential function, and that there is a clear relationship between 90Sr and Q. This study is the first to reveal that the log(90Sr)-log(Q) slope has been gradually decreasing since the accident. This trend persists after decay correction. Thus, it is not caused by the physical decay of 90Sr and environmental diffusion, but implies that the concentration formation processes in stream water have been changing over a long period. We propose a hydrochemical model to explain the time-dependency of the 90Sr-Q relationship. This paper presents a mathematical implementation of the new concept and describes the model assumptions. Our model accurately represents both the long-term 90Sr trend in stream water and the time-dependency of the 90Sr-Q relationship. Although this paper considers a small catchment in Chernobyl, the conceptual model is shown to be applicable to other accidental releases of radionuclides.

9.
Environ Pollut ; 259: 113764, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32040987

RESUMO

Wildfires may play a role in redistributing radionuclides in the environment in combination with hydrological processes such as surface runoff and soil erosion. We investigated plot-scale radionuclide wash-off at forest sites affected by wildfires in the Chernobyl Exclusion Zone (CEZ). We also compared speciation of the washed-off radionuclides with those in previous studies conducted just after the accident in 1986. We observed the surface runoff and the radionuclide wash-off with a soil erosion plot at forest and post-fire sites during May-September 2018. In the post-fire site, 2.81 mm of surface runoff was observed in at least three flow events resulting from 285.8 mm total rainfall. The fluxes of dissolved and particulate 137Cs were estimated as 4.9 and 161 Bq m-2, respectively. The dissolved phase 90Sr flux was estimated as 214 Bq m-2. At the forest site, a single surface runoff (0.67 mm) event was generated by rainfall of 182.2 mm. The fluxes of dissolved and particulate 137Cs wash-off values were 6.2 and 8.6 Bq m-2, respectively. The flux of dissolved 90Sr wash-off from the forest was estimated as 45.1 Bq m-2. The distribution coefficient, which indicates the dissolved-particulate form of radionuclides, in the post-fire site was 30 times higher than that in the forest site, indicating the importance of particulate 137Cs wash-off after fire in the CEZ. The entrainment coefficients for dissolved and particulate 137Cs concentrations were around 50 times lower than those obtained in the corresponding position within the CEZ immediately after the accident in 1987. The effect of downward migration of 137Cs over 30 years led to decreased entrainment coefficients for dissolved and particulate 137Cs. The effect of downward migration of radionuclides was considered sufficient to indicate changes in normalized liquid and solid radionuclides wash-off entrainment coefficient and the distribution coefficient in this study.


Assuntos
Radioisótopos de Césio/efeitos adversos , Acidente Nuclear de Chernobyl , Florestas , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água , Incêndios Florestais , Árvores
10.
J Environ Radioact ; 204: 132-142, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029987

RESUMO

A proper understanding of radioactive contamination levels of food resources near the Fukushima Dai-ichi Nuclear Power Plant is necessary to estimate the potential effects of radionuclide contamination on human health. This study was conducted to present a direct comparison of radiocesium (134Cs and 137Cs) concentrations in marine and freshwater fish inhabiting different water bodies in Fukushima Prefecture (coastal waters, 6.3-54.5 km from the plant; forest rivers and irrigation ponds, 1.4-71.6 km), and to reveal plausible contamination mechanisms for each habitat. In contrast to marine demersal fish (7 species, n = 50), which showed lower and less variable radiocesium concentrations (0.234-3.41 Bq kg-1-wet), freshwater fish (6 species, n = 463) showed higher and more site-specific variations for each species and habitat (4.09 Bq kg-1-wet - 25.6 kBq kg-1-wet) in 2015-2016. The apparent concentration ratio (aCR, L/kg) of 137Cs in fish to water is higher for fish of freshwater habitats (mean 1240-12900 for each site) than in those of coastal waters (mean 200). Radiocesium contamination is more severe and persistent in freshwater fish, especially those distributed within the designated evacuation zone (salmon in rivers and bass in ponds). Continuous radiocesium uptake through the food web in relation to fish feeding habits and size (size effect), and biotic/abiotic characteristics in water and surrounding environments are main factors affecting site/habitat-specific bioaccumulation of radiocesium in freshwater fish. By contrast, uniformly lower radiocesium concentrations in marine demersal fish are mainly attributable to decreased radiocesium transfer intensity from the benthic food web because of lowered radiocesium contamination in sediments, and low physiological ability to retain radiocesium. Our results revealed a strong contrast of radiocesium contamination levels and mechanisms between marine and freshwater fish in natural habitats. Particularly, a close relation between 137Cs accumulation in river salmon and contamination of prey items in forest ecosystems (mainly terrestrial and aquatic insects) is peculiar to the upstream areas affected by the Fukushima accident.


Assuntos
Radioisótopos de Césio/metabolismo , Meio Ambiente , Peixes/metabolismo , Monitoramento de Radiação , Poluentes Radioativos da Água/metabolismo , Animais , Cadeia Alimentar , Água Doce , Acidente Nuclear de Fukushima , Japão , Radioatividade , Água do Mar
11.
J Environ Radioact ; 204: 95-103, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30991205

RESUMO

To elucidate long term changes in gamma radiation from a limited region of interest of the forest floor, a simple monitoring procedure using a cumulative personal dosimeter (D-shuttle) was examined from 2016 to 2017. The test site was in a small forest in Abiko, Japan, where the initial radiocesium contamination from the Fukushima Dai-ichi Nuclear Power Plant was 60-100 kBq m-2. Three experimental plots basically containing a set of two 5 × 5 m2 observation areas were arranged at the site. The litterfall and decomposing organic layer of one area (D: decontaminated) were fully eliminated before the monitoring, whereas the other area (N: natural) was left unchanged. Five D-shuttle sets (i.e., D-shuttle, lead shield, and holder) per area were set up. One D-shuttle set could monitor the specific gamma radiation from radiocesium distributed within a limited area of ground (0.5 m radius of circle = ca. 0.8 m2 area of flat ground). The results indicated significant differences in the accumulated doses among each of the plots and areas, reflecting their soil radiocesium inventories. Interestingly, every index decreased with time, but the decreases were slower than the theoretical decay of radiocesium (134Cs and 137Cs). In addition, the accumulated dose decreased during heavy rainfall events. One possible explanation for these changes of the accumulated dose is a combination of meteorological and tree phenological phenomena, such as radiocesium from the forest canopy being newly added to the floor primarily by litterfall and soil moisture content disturbing radiation emitted from soils. This simple procedure enables long-term observation of gamma radiation from a limited area of forest floor non-invasively and semi-quantitatively.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Raios gama , Dosímetros de Radiação , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Florestas , Japão , Monitoramento de Radiação/instrumentação
12.
J Environ Radioact ; 186: 34-44, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29029765

RESUMO

Dynamics of the Fukushima-derived radiocesium and distribution of the natural stable isotope 133Cs in Japanese cedar (Cryptomeria japonica D. Don) forest ecosystems were studied during 2014-2016. For the experimental site in Yamakiya, Fukushima Prefecture, we present the redistribution of radiocesium among ecosystem compartments during the entire observation period, while the results obtained at another two experimental site were used to demonstrate similarity of the main trends in the Japanese forest ecosystems. Our observations at the Yamakiya site revealed significant redistribution of radiocesium between the ecosystem compartments during 2014-2016. During this same period radionuclide inventories in the aboveground tree biomass were relatively stable, however, radiocesium in forest litter decreased from 20 ± 11% of the total deposition in 2014 to 4.6 ± 2.7% in 2016. Radiocesium in the soil profile accumulated in the 5-cm topsoil layers. In 2016, more than 80% of the total radionuclide deposition in the ecosystem resided in the 5-cm topsoil layer. The radiocesium distribution between the aboveground biomass compartments at Yamakiya during 2014-2016 was gradually approaching a quasi-equilibrium distribution with stable cesium. Strong correlations of radioactive and stable cesium isotope concentrations in all compartments of the ecosystem have not been reached yet. However, in some compartments the correlation is already strong. An increase of radiocesium concentrations in young foliage in 2016, compared to 2015, and an increase in 2015-2016 of the 137Cs/133Cs concentration ratio in the biomass compartments with strong correlations indicate an increase in root uptake of radiocesium from the soil profile. Mass balance of the radionuclide inventories, and accounting for radiocesium fluxes in litterfall, throughfall and stemflow, enabled a rough estimate of the annual radiocesium root uptake flux as 2 ± 1% of the total inventory in the ecosystem.


Assuntos
Isótopos de Césio/análise , Radioisótopos de Césio/análise , Florestas , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Cryptomeria , Japão , Radioatividade
13.
J Environ Radioact ; 178-179: 367-376, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28797551

RESUMO

137Cs activity concentration in the water of four ponds, Suzuuchi (SU), Funasawa (FS), Inkyozaka (IZ), and Kashiramori (KM), that are within 10 km of the Fukushima Dai-ichi nuclear power plant were observed from April 2015 to August 2016. 137Cs inventories in soils surrounding SU, FS, IZ, and KM were 6.4, 2.9, 2.1, and 0.9 MBq m-2, respectively. 137Cs inventories in the bottom sediments of SU, FS, IZ, and KM were 13, 8.9, 1.6, and 1.1 MBq m-2, respectively. Higher 137Cs inventories in bottom sediment than those of soil in SU and FS suggest that 137Cs was delivered to and accumulated in these ponds. Mean total 137Cs activity concentrations in SU, FS, IZ, and KM were 41, 13, 9.5, and 1.4 Bq L-1, respectively. Particulate 137Cs concentration accounted for 71-90% of total 137Cs in the water samples, on average. The mean distribution coefficient, Kd, in SU, FS, IZ, and KM was 1.3 × 105, 2.1 × 105, 1.7 × 105, and 6.2 × 105 L kg-1, respectively. These Kd values were higher than the Kd values observed in the Chernobyl area by 1-2 orders of magnitude. Although no significant decreasing trends were found, dissolved 137Cs activity concentration tended to be low during winter in all four ponds. Dissolved 137Cs activity concentrations were proportional to K+ and DOC concentrations in all the ponds. The results from principal component analysis performed for 137Cs activity concentration and water chemistry data sets suggested that there were different mechanisms behind variability of dissolved 137Cs activity concentrations for each pond. Continuous monitoring is required to reveal temporal trends in 137Cs activity concentrations of these waters and controlling factors of such in closed water systems in Fukushima.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Lagoas/química , Monitoramento de Radiação , Poluentes Radioativos da Água/análise , Japão , Centrais Nucleares
14.
J Environ Radioact ; 166(Pt 1): 45-55, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26948679

RESUMO

The Fukushima-derived radiocesium distribution in the typical Japanese cedar (Cryptomeria japonica D. Don) forest ecosystem was determined. In four years after the Fukushima accident, about 74% of the total radiocesium inventory was localized in soil, 20% was in the litter, and only 6% was associated with the aboveground biomass. Most of the radiocesium that was initially intercepted by the tree canopies has been already transported to the ground surface. The importance of the processes for removal of radiocesium from the tree canopies decreased in the order litterfall > throughfall >> stemflow. Within the tree compartments, the largest radiocesium activity fraction, about 46%, was observed in old foliage, which indicates that the process of removal of the initial deposit from the tree crowns has not yet completed. The aggregate soil-to-wood transfer factor was 1.1⋅10-3 m2 kg-1 d.w., which is close to the geometric means of transfer factors recommended by IAEA for other coniferous tree species. Further studies in Fukushima forest are necessary to assess the variation of this parameter under various soil-landscape conditions. Presence of the residues of the initial deposits does not allow to obtain the accurate values of the annual radiocesium fluxes in the ecosystem. Based on the conservative assumptions, the ranges of the fluxes were estimated. Analysis of the flux structures shows that up to percents of the total radiocesium activity in the ecosystem may be involved into biogenic cycling.


Assuntos
Radioisótopos de Césio/análise , Cryptomeria , Florestas , Acidente Nuclear de Fukushima , Poluentes Radioativos do Solo/análise , Monitoramento de Radiação , Cinza Radioativa/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-22043215

RESUMO

BACKGROUND: The Russian Arctic covers an enormous landmass with diverse environments. It inhabits more than 20 different ethnic groups, all of them with various living conditions and food traditions. Indigenous populations with a traditional way of living are exposed to a large number of anthropogenic pollutants, such as persistent organic pollutants (POPs) and toxic metals, mainly through the diet. Human monitoring of persistent organic pollutants (POPs) and heavy metals in the Russian Arctic has only been performed on irregular intervals over the past 15 years, thus, there is still a lack of baseline data from many ethnic groups and geographical regions. The aim of the current study was to investigate concentrations of POPs and toxic metals in three groups of indigenous people from the Russian Arctic. Plasma concentrations of POPs were measured in one of the locations (Nelmin-Nos) in 2001-2003 which gave the unique opportunity to compare concentrations over time in a small Russian arctic community. METHODS: During 2009 and early 2010, 209 blood samples were collected from three different study sites in North West Russia; Nelmin-Nos, Izhma and Usinsk. The three study sites are geographically separated and the inhabitants are expected to have different dietary habits and living conditions. All blood samples were analyzed for POPs and toxic metals. RESULTS: PCB 153 was present in highest concentrations of the 18 PCBs analyzed. p,p'-DDE and HCB were the two most dominating OC pesticides. Males had higher concentrations of PCB 138, 153 and 180 than women and age was a significant predictor of PCB 153, 180, HCB and p,p'-DDD. Males from Izhma had significantly higher concentrations of HCB than males from the other study sites and women from Usinsk had higher concentrations of p,p'-DDE. Parity was a significant predictor of p,p'-DDE. Hg and Pb concentrations increased with increasing age and males had significantly higher concentrations of Pb than women. The study group from Izhma had significantly higher concentrations of Cd when controlling for age and gender and the study group from Usinsk had higher concentrations of Se than the others. Compared to the results from Nelmin-Nos in 2001-2003, a clear decrease in p,p'-DDE concentrations for both women and men was observed. CONCLUSIONS: The current study indicates a significant reduction of several PTSs in human blood samples from North West Russia over the past 10 years.


Assuntos
Dieta , Poluentes Ambientais/sangue , Metais/sangue , Compostos Orgânicos/sangue , Praguicidas/sangue , Grupos Populacionais/estatística & dados numéricos , Adolescente , Adulto , Fatores Etários , Idoso , Regiões Árticas , Criança , Exposição Ambiental , Poluentes Ambientais/toxicidade , Feminino , Contaminação de Alimentos , Humanos , Masculino , Metais/toxicidade , Pessoa de Meia-Idade , Compostos Orgânicos/toxicidade , Praguicidas/toxicidade , Federação Russa , Fatores Sexuais , Adulto Jovem
16.
Environ Sci Technol ; 40(21): 6601-7, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17144284

RESUMO

Weekly high-volume air samples were collected between 2000 and 2003 at six Arctic sites, i.e., Alert, Kinngait, and Little Fox Lake (LFL) in Canada, Point Barrow in Alaska, Valkarkai in Russia, and Zeppelin in Norway. Hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were quantified in all samples. Comparison showed that alpha-HCH and HCB were homogeneously distributed in the circumpolar atmosphere and uniform throughout the seasons. However, significantly higher atmospheric concentrations of alpha-HCH and HCB and strongertemperature dependence of alpha-HCH and gamma-HCH were found at LFL in Yukon (YK), which is unique among the sites by virtue of its high altitude and low latitude, resulting in higher precipitation rates and summer temperatures. Strong temperature dependence of alpha- and gamma-HCH at this location suggests that secondary emissions, i.e., re-evaporation from surfaces, were more important at this site than others. It is hypothesized that a higher precipitation rate at LFL facilitated the transfer of alpha-HCH from the atmosphere to surface media when technical HCH was still in use worldwide. On the other hand, higher temperature at LFL enhanced reevaporation to the atmosphere after the global ban of technical HCH. In contrast to alpha-HCH and HCB, larger spatial and seasonal differences were seen for gamma-HCH (a currently used pesticide), which likely reflect the influence of different primary contaminant sources on different Arctic locations. Fugacity ratios suggest a net deposition potential of HCB from air to seawater, whereas seawater/air exchange direction of alpha-HCH varies in the circumpolar environment.


Assuntos
Poluentes Atmosféricos , Atmosfera , Monitoramento Ambiental/métodos , Hexaclorobenzeno/análise , Hexaclorocicloexano/análise , Praguicidas/análise , Estações do Ano , Regiões Árticas , Meio Ambiente , Hidrocarbonetos Clorados/análise , Controle de Qualidade , Água do Mar , Propriedades de Superfície , Temperatura
17.
Sci Total Environ ; 342(1-3): 185-98, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15866275

RESUMO

Eight years of gaseous elemental mercury (GEM) concentration measurements from Alert, Nunavut, Canada (between 1995 and 2002) is presented. The annual time series shows a distinct repeating seasonal pattern with an overall annual median concentration for this time period of 1.58 (S.D.=0.04 ng m(-3)). Strong seasonal variation was observed throughout the years with springtime displaying strong variability in the GEM and overall lower median concentrations due to the so-called mercury depletion events (MDEs). Summer concentrations are higher than the annual average and show a decrease in variability. Fall and winter concentrations are distributed around the annual median concentrations and show little variability. The relationship between the springtime depression and the summer increase shows a change in the behaviour of mercury between 1995 and 2002. Preliminary results suggest that during this period an increasing amount of the mercury lost from the atmosphere in the spring is not returned to atmosphere in summer. A comparison of GEM concentration data from three sites--Alert (Canada), Amderma (Russia) and Kuujjuarapik (Canada)--demonstrated similar monthly distribution of GEM between Alert and Amderma, with the latter not showing as high summer concentrations. Monthly distribution of GEM at Kuujjuarapik varied considerably from the other two sites. MDEs were found to occur at each site in the spring yet displayed different characteristics. MDEs appear to start at Alert shortly after polar sunrise but in Amderma their initiation is delayed approximately 2 months following polar sunrise. MDEs occur in Kuujjuarapik in the springtime despite an incomplete development of the polar day-night cycle. In spring, as soon as air temperature attained temperatures consistently above 0 degrees C, MDEs ended immediately at all three sites. Continued studies into MDEs are warranted, but clearly an important component of future studies must focus on the origins of the variation of GEM behaviour at different sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...