Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35161383

RESUMO

The phylloplane is an integrated part of green infrastructure which interacts with plant health. Taxonomic characterization of the phylloplane with the aim to link it to ecosystem functioning under anthropogenic pressure is not sufficient because only active microorganisms drive biochemical processes. Activity of the phylloplane remains largely overlooked. We aimed to study the interactions among the biological characteristics of the phylloplane: taxonomic diversity, functional diversity and activity, and the pollution grade. Leaves of Betula pendula were sampled in Moscow at increasing distances from the road. For determination of phylloplane activity and functional diversity, a MicroResp tool was utilized. Taxonomic diversity of the phylloplane was assessed with a combination of microorganism cultivation and molecular techniques. Increase of anthropogenic load resulted in higher microbial respiration and lower DNA amount, which could be viewed as relative inefficiency of phylloplane functioning in comparison to less contaminated areas. Taxonomic diversity declined with road vicinity, similar to the functional diversity pattern. The content of Zn in leaf dust better explained the variation in phylloplane activity and the amount of DNA. Functional diversity was linked to variation in nutrient content. The fraction of pathogenic fungi of the phylloplane was not correlated with any of the studied elements, while it was significantly high at the roadsides. The bacterial classes Gammaproteobacteria and Cytophagia, as well as the Dothideomycetes class of fungi, are exposed to the maximal effect of distance from the highway. This study demonstrated the sensitivity of the phylloplane to road vicinity, which combines the effects of contaminants (mainly Zn according to this study) and potential stressful air microclimatic conditions (e.g., low relative air humidity, high temperature, and UV level). Microbial activity and taxonomic diversity of the phylloplane could be considered as an additional tool for bioindication.

2.
Sci Total Environ ; 783: 147020, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088165

RESUMO

The Lena, a large river that drains the northern coldest region of the Northern Hemisphere, is deeply influenced by the continuous permafrost and degradation of the frozen ground has been shown to be the main cause of the marked increase in water discharge. The first objective of this study conducted on the middle Lena was to analyze the island dynamics for the last 50 years (1967 to 2017). Several morphological parameters were surveyed using a GIS on seven series of aerial photographs and satellite images of a 100 km-long reach: island size, eroded and deposited areas, position and morphology of the islands. This approach enabled the identification of evolutionary models. Our second objective was to evaluate the potential impact of ongoing climate change. We analyzed morphological parameters with respect to two main factors: efficient discharge (bar-full, bankfull and flood discharges) and water temperature. A potential erosion index (PEI) was calculated by coupling the duration of discharge exceeding the bar-full level and water temperature. The results identified several morphological changes that occurred at the end of the 20th century: an increase in the number of islands, greater eroded surfaces and accelerated migration of islands. Comparing the dynamics of islands with and without permafrost is a good indicator of their sensitivity to climate change. A major change was observed concerning the erosion and migration of islands with and without permafrost. This evolution seems to be linked both with the duration of the discharge that exceeds the bar-full level and with the number of flood peaks. The water temperature in May and August have a major influence on permafrost islands that become increasingly destabilized. Thus, as large rivers are assumed to slowly react to climate change, the recent changes in the Lena River prove that the global change deeply impacts periglacial rivers.

3.
Glob Chang Biol ; 27(12): 2822-2839, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33774862

RESUMO

Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17-m-long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ~70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n-alkane concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted 1-year-long incubations (4°C, dark) and measured anaerobic carbon dioxide (CO2 ) and methane (CH4 ) production. The sediments from both cores contained little TOC (0.7 ± 0.4 wt%), but DOC values were relatively high, with the highest values in the frozen Yedoma lake sediments (1620 mg L-1 ). Cumulative greenhouse gas (GHG) production after 1 year was highest in the Yedoma lake sediments (226 ± 212 µg CO2 -C g-1  dw, 28 ± 36 µg CH4 -C g-1  dw) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75 ± 76 µg CO2 -C g-1  dw, 19 ± 29 µg CH4 -C g-1  dw). The highest CO2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH4 production in the non-frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non-frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. Our results suggest that GHG production from TOC-poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice-rich permafrost deposits vulnerable to thermokarst formation.


Assuntos
Gases de Efeito Estufa , Lagos , Regiões Árticas , Biomarcadores , Lipídeos , Metano/análise , Federação Russa , Sibéria
4.
Health Place ; 66: 102429, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32992266

RESUMO

There is currently an increase in the number of heat waves occurring worldwide. Moscow experienced the effects of an extreme heat wave in 2010, which resulted in more than 10,000 extra deaths and significant economic damage. This study conducted a comprehensive assessment of the social risks existing during the occurrence of heat waves and allowed us to identify the spatial heterogeneity of the city in terms of thermal risk and the consequences for public health. Using a detailed simulation of the meteorological regime based on the COSMO-CLM regional climate model and the physiologically equivalent temperature (PET), a spatial assessment of thermal stress in the summer of 2010 was carried out. Based on statistical data, the components of social risk (vulnerabilities and adaptive capacity of the population) were calculated and mapped. We also performed an analysis of their changes in 2010-2017. A significant differentiation of the territory of Moscow has been revealed in terms of the thermal stress and vulnerability of the population to heat waves. The spatial pattern of thermal stress agrees quite well with the excess deaths observed during the period from July to August 2010. The identified negative trend of increasing vulnerability of the population has grown in most districts of Moscow. The adaptive capacity has been reduced in most of Moscow. The growth of adaptive capacity mainly affects the most prosperous areas of the city.


Assuntos
Calor Extremo , Cidades , Clima , Calor Extremo/efeitos adversos , Temperatura Alta , Humanos , Mortalidade , Moscou/epidemiologia , Estações do Ano
5.
Nat Commun ; 10(1): 264, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651568

RESUMO

Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged.

6.
Int J Environ Health Res ; 28(5): 522-534, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30019603

RESUMO

The authors studied the relative predictive powers of several bioclimatic indices as predictors of population mortality during heat waves. Daily mean and maximum values of air temperature, Humidex, apparent, and physiological equivalent temperatures (PETs) were examined. The numbers of daily deaths and daily meteorological data in Rostov-on-Don (southern Russia) were used. The study period spanned April-September between 1999 and 2011. The eight selected bioclimatic indices were used to identify heat waves and calculate the expected increases in mortality during such events from Poisson generalized linear model of daily death counts. All of the bioclimatic indices considered were positively and significantly associated with mortality during heat waves. The best predictor was chosen from a set of similar models by maximization of relative mortality risk estimates. Having compared the relative increases and their significance levels in several cause- and age-specific mortality rates, the authors concluded that PET was the most powerful predictor.


Assuntos
Doenças Cardiovasculares/mortalidade , Adulto , Idoso , Clima , Temperatura Alta , Humanos , Federação Russa/epidemiologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...