Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 11: 1358978, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721393

RESUMO

As the area of robotics achieves promising results, there is an increasing need to scale robotic software architectures towards real-world domains. Traditionally, robotic architectures are integrated using common frameworks, such as ROS. Therefore, systems with a uniform structure are produced, making it difficult to integrate third party contributions. Virtualisation technologies can simplify the problem, but their use is uncommon in robotics and general integration procedures are still missing. This paper proposes and evaluates a containerised approach for designing and integrating multiform robotic architectures. Our approach aims at augmenting preexisting architectures by including third party contributions. The integration complexity and computational performance of our approach is benchmarked on the EU H2020 SecondHands robotic architecture. Results demonstrate that our approach grants simplicity and flexibility of setup when compared to a non-virtualised version. The computational overhead of using our approach is negligible as resources were optimally exploited.

2.
Front Nutr ; 9: 898031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35879982

RESUMO

The ubiquitous nature of smartphone ownership, its broad application and usage, along with its interactive delivery of timely feedback are appealing for health-related behavior change interventions via mobile apps. However, users' perspectives about such apps are vital in better bridging the gap between their design intention and effective practical usage. In this vein, a modified technology acceptance model (mTAM) is proposed here, to explain the relationship between users' perspectives when using an AI-based smartphone app for personalized nutrition and healthy living, namely, PROTEIN, and the mTAM constructs toward behavior change in their nutrition and physical activity habits. In particular, online survey data from 85 users of the PROTEIN app within a period of 2 months were subjected to confirmatory factor analysis (CFA) and regression analysis (RA) to reveal the relationship of the mTAM constructs, i.e., perceived usefulness (PU), perceived ease of use (PEoU), perceived novelty (PN), perceived personalization (PP), usage attitude (UA), and usage intention (UI) with the users' behavior change (BC), as expressed via the acceptance/rejection of six related hypotheses (H1-H6), respectively. The resulted CFA-related parameters, i.e., factor loading (FL) with the related p-value, average variance extracted (AVE), and composite reliability (CR), along with the RA results, have shown that all hypotheses H1-H6 can be accepted (p < 0.001). In particular, it was found that, in all cases, FL > 0.5, CR > 0.7, AVE > 0.5, indicating that the items/constructs within the mTAM framework have good convergent validity. Moreover, the adjusted coefficient of determination (R 2) was found within the range of 0.224-0.732, justifying the positive effect of PU, PEoU, PN, and PP on the UA, that in turn positively affects the UI, leading to the BC. Additionally, using a hierarchical RA, a significant change in the prediction of BC from UA when the UI is used as a mediating variable was identified. The explored mTAM framework provides the means for explaining the role of each construct in the functionality of the PROTEIN app as a supportive tool for the users to improve their healthy living by adopting behavior change in their dietary and physical activity habits. The findings herein offer insights and references for formulating new strategies and policies to improve the collaboration among app designers, developers, behavior scientists, nutritionists, physical activity/exercise physiology experts, and marketing experts for app design/development toward behavior change.

3.
Front Robot AI ; 7: 513004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501300

RESUMO

This paper demonstrates how tactile and proximity sensing can be used to perform automatic mechanical fractures detection (surface cracks). For this purpose, a custom-designed integrated tactile and proximity sensor has been implemented. With the help of fiber optics, the sensor measures the deformation of its body, when interacting with the physical environment, and the distance to the environment's objects. This sensor slides across different surfaces and records data which are then analyzed to detect and classify fractures and other mechanical features. The proposed method implements machine learning techniques (handcrafted features, and state of the art classification algorithms). An average crack detection accuracy of ~94% and width classification accuracy of ~80% is achieved. Kruskal-Wallis results (p < 0.001) indicate statistically significant differences among results obtained when analysing only integrated deformation measurements, only proximity measurements and both deformation and proximity data. A real-time classification method has been implemented for online classification of explored surfaces. In contrast to previous techniques, which mainly rely on visual modality, the proposed approach based on optical fibers might be more suitable for operation in extreme environments (such as nuclear facilities) where radiation may damage electronic components of commonly employed sensing devices, such as standard force sensors based on strain gauges and video cameras.

4.
PLoS One ; 13(12): e0208228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30586407

RESUMO

Grasp affordances in robotics represent different ways to grasp an object involving a variety of factors from vision to hand control. A model of grasp affordances that is able to scale across different objects, features and domains is needed to provide robots with advanced manipulation skills. The existing frameworks, however, can be difficult to extend towards a more general and domain independent approach. This work is the first step towards a modular implementation of grasp affordances that can be separated into two stages: approach to grasp and grasp execution. In this study, human experiments of approaching to grasp are analysed, and object-independent patterns of motion are defined and modelled analytically from the data. Human subjects performed a specific action (hammering) using objects of different geometry, size and weight. Motion capture data relating the hand-object approach distance was used for the analysis. The results showed that approach to grasp can be structured in four distinct phases that are best represented by non-linear models, independent from the objects being handled. This suggests that approaching to grasp patterns are following an intentionally planned control strategy, rather than implementing a reactive execution.


Assuntos
Força da Mão/fisiologia , Modelos Teóricos , Robótica , Feminino , Mãos/fisiologia , Humanos , Masculino , Dinâmica não Linear
5.
PLoS One ; 13(1): e0192259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29377938

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0171706.].

6.
Sensors (Basel) ; 17(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027920

RESUMO

Tactile perception is a feature benefiting reliable grasping and manipulation. This paper presents the design of an integrated fingertip force sensor employing an optical fiber based approach where applied forces modulate light intensity. The proposed sensor system is developed to support grasping of a broad range of objects, including those that are hard as well those that are soft. The sensor system is comprised of four sensing elements forming a tactile array integrated with the tip of a finger. We investigate the design configuration of a separate force sensing element with the aim to improve its measurement range. The force measurement of a single tactile element is based on a two-level displacement that is achieved thanks to a hybrid sensing structure made up of a stiff linear and flexible ortho-planar spring. An important outcome of this paper is a miniature tactile fingertip sensor that is capable of perceiving light contact, typically occurring during the initial stages of a grasp, as well as measuring higher forces, commonly present during tight grasps.


Assuntos
Técnicas Biossensoriais/instrumentação , Dedos , Fibras Ópticas , Força da Mão , Humanos , Fenômenos Mecânicos , Tato
7.
PLoS One ; 12(3): e0172703, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28248996

RESUMO

Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.


Assuntos
Elasticidade , Modelos Biológicos , Imagens de Fantasmas , Procedimentos Cirúrgicos Robóticos , Silicones , Humanos , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos
8.
PLoS One ; 12(2): e0171706, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28199349

RESUMO

This paper presents experimental evidence for the existence of a set of unique force modulation strategies during manual soft tissue palpation to locate hard abnormalities such as tumors. We explore the active probing strategies of defined local areas and outline the role of force control. In addition, we investigate whether the applied force depends on the non-homogeneity of the soft tissue. Experimental results on manual palpation of soft silicone phantoms show that humans have a well defined force control pattern of probing that is used independently of the non-homogeneity of the soft tissue. We observed that the modulations of lateral forces are distributed around the mean frequency of 22.3 Hz. Furthermore, we found that the applied normal pressure during probing can be modeled using a second order reactive autoregressive model. These mathematical abstractions were implemented and validated for the autonomous palpation for different stiffness parameters using a robotic probe with a rigid spherical indentation tip. The results show that the autonomous robotic palpation strategy abstracted from human demonstrations is capable of not only detecting the embedded nodules, but also enhancing the stiffness perception compared to static indentation of the probe.


Assuntos
Modelos Biológicos , Palpação/métodos , Robótica , Algoritmos , Módulo de Elasticidade , Dedos/fisiologia , Humanos , Cadeias de Markov , Tato
9.
Med Biol Eng Comput ; 53(11): 1177-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26018755

RESUMO

This paper explores methods that make use of visual cues aimed at generating actual haptic sensation to the user, namely pseudo-haptics. We propose a new pseudo-haptic feedback-based method capable of conveying 3D haptic information and combining visual haptics with force feedback to enhance the user's haptic experience. We focused on an application related to tumor identification during palpation and evaluated the proposed method in an experimental study where users interacted with a haptic device and graphical interface while exploring a virtual model of soft tissue, which represented stiffness distribution of a silicone phantom tissue with embedded hard inclusions. The performance of hard inclusion detection using force feedback only, pseudo-haptic feedback only, and the combination of the two feedbacks was compared with the direct hand touch. The combination method and direct hand touch had no significant difference in the detection results. Compared with the force feedback alone, our method increased the sensitivity by 5%, the positive predictive value by 4%, and decreased detection time by 48.7%. The proposed methodology has great potential for robot-assisted minimally invasive surgery and in all applications where remote haptic feedback is needed.


Assuntos
Retroalimentação , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Modelos Biológicos , Palpação/instrumentação , Desenho de Equipamento , Humanos , Neoplasias/fisiopatologia , Imagens de Fantasmas , Procedimentos Cirúrgicos Robóticos
10.
IEEE Trans Biomed Eng ; 61(6): 1651-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24845274

RESUMO

Improving the effectiveness of artificial tactile sensors for soft-tissue examination and tumor localization is a pressing need in robot-assisted minimally invasive surgery. Despite the availability of tactile probes, guidelines for optimal palpation behavior that best exploit soft-tissue properties are not available as yet. Simulations on soft-tissue palpation show that particular stress-velocity patterns during tissue probing lead to constructive dynamic interactions between the probe and the tissue, enhancing the detection and localization of hard nodules. To the best of our knowledge, this is the first attempt to methodically evaluate the hypothesis that specific human palpation behaviors (defined by the fingers' velocity, trajectory, and exerted force) directly influence the diagnosis of soft-tissue organs. Here, we use simulation studies involving human participants to establish open hypotheses on the interaction and influence of relevant behavioral palpation variables, such as finger trajectory, its velocity, and force exerted by fingers on the accuracy of detecting embedded nodules. We validate this hypothesis through finite element analysis and the investigation of palpation strategies used by humans during straight unidirectional examination to detect hard nodules inside silicone phantoms and ex-vivo porcine organs. Thus, we conclude that the palpation strategy plays an important role during soft-tissue examination. Our findings allow us, for the first time, to derive palpation behavior guidelines suitable for the design of controllers of palpation robots.


Assuntos
Dedos/fisiologia , Modelos Biológicos , Palpação/métodos , Tato/fisiologia , Animais , Humanos , Rim/fisiologia , Neoplasias/diagnóstico , Neoplasias/fisiopatologia , Imagens de Fantasmas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...