Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(10): 1270-1277, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770609

RESUMO

Cyanovirin-N (CV-N) binds high-mannose oligosaccharides on enveloped viruses with two carbohydrate-binding sites, one bearing high affinity and one low affinity to Manα(1-2)Man moieties. A tandem repeat of two CV-N molecules (CVN2) was tested for antiviral activity against human immunodeficiency virus type I (HIV-1) by using a domain-swapped dimer. CV-N was shown to bind N-acetylmannosamine (ManNAc) and N-acetyl-d-glucosamine (GlcNAc) when the carbohydrate-binding sites in CV-N were free to interact with these monosaccharides independently. CVN2 recognized ManNAc at a Kd of 1.4 µM and bound this sugar in solution, regardless of the lectin making amino acid side chain contacts on the targeted viral glycoproteins. An interdomain cross-contacting residue Glu41, which has been shown to be hydrogen bonding with dimannose, was substituted in the monomeric CV-N. The amide derivative of glucose, GlcNAc, achieved similar high affinity to the new variant CVN-E41T as high-mannose N-glycans, but binding to CVN2 in the nanomolar range with four binding sites involved or binding to the monomeric CVN-E41A. A stable dimer was engineered and expressed from the alanine-to-threonine-substituted monomer to confirm binding to GlcNAc. In summary, low-affinity binding was achieved by CVN2 to dimannosylated peptide or GlcNAc with two carbohydrate-binding sites of differing affinities, mimicking biological interactions with the respective N-linked glycans of interest and cross-linking of carbohydrates on human T cells for lymphocyte activation.


Assuntos
Acetilglucosamina , Proteínas de Bactérias , Proteínas de Transporte , Acetilglucosamina/metabolismo , Acetilglucosamina/química , Sítios de Ligação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/química , Humanos , HIV-1/metabolismo , Ligação Proteica , Hexosaminas/metabolismo , Hexosaminas/química , Modelos Moleculares , Multimerização Proteica
2.
J Biomol NMR ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509441

RESUMO

We present an economic and straightforward method to introduce 13C-19F spin systems into the deuterated aromatic side chains of phenylalanine as reporters for various protein NMR applications. The method is based on the synthesis of [4-13C, 2,3,5,6-2H4] 4-fluorophenylalanine from the commercially available isotope sources [2-13C] acetone and deuterium oxide. This compound is readily metabolized by standard Escherichia coli overexpression in a glyphosate-containing minimal medium, which results in high incorporation rates in the corresponding target proteins.

3.
J Biomol NMR ; 78(1): 1-8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37816933

RESUMO

In this study, we present the synthesis and incorporation of a metabolic isoleucine precursor compound for selective methylene labeling. The utility of this novel α-ketoacid isotopologue is shown by incorporation into the protein Brd4-BD1, which regulates gene expression by binding to acetylated histones. High quality single quantum 13C-1 H-HSQC were obtained, as well as triple quantum HTQC spectra, which are superior in terms of significantly increased 13C-T2 times. Additionally, large chemical shift perturbations upon ligand binding were observed. Our study thus proves the great sensitivity of this precursor as a reporter for side-chain dynamic studies and for investigations of CH-π interactions in protein-ligand complexes.


Assuntos
Isoleucina , Fatores de Transcrição , Fatores de Transcrição/química , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligantes , Ressonância Magnética Nuclear Biomolecular
4.
Viruses ; 15(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112983

RESUMO

Rhinoviruses (RVs) are the major cause of common cold, a respiratory disease that generally takes a mild course. However, occasionally, RV infection can lead to serious complications in patients debilitated by other ailments, e.g., asthma. Colds are a huge socioeconomic burden as neither vaccines nor other treatments are available. The many existing drug candidates either stabilize the capsid or inhibit the viral RNA polymerase, the viral proteinases, or the functions of other non-structural viral proteins; however, none has been approved by the FDA. Focusing on the genomic RNA as a possible target for antivirals, we asked whether stabilizing RNA secondary structures might inhibit the viral replication cycle. These secondary structures include G-quadruplexes (GQs), which are guanine-rich sequence stretches forming planar guanine tetrads via Hoogsteen base pairing with two or more of them stacking on top of each other; a number of small molecular drug candidates increase the energy required for their unfolding. The propensity of G-quadruplex formation can be predicted with bioinformatics tools and is expressed as a GQ score. Synthetic RNA oligonucleotides derived from the RV-A2 genome with sequences corresponding to the highest and lowest GQ scores indeed exhibited characteristics of GQs. In vivo, the GQ-stabilizing compounds, pyridostatin and PhenDC3, interfered with viral uncoating in Na+ but not in K+-containing phosphate buffers. The thermostability studies and ultrastructural imaging of protein-free viral RNA cores suggest that Na+ keeps the encapsulated genome more open, allowing PDS and PhenDC3 to diffuse into the quasi-crystalline RNA and promote the formation and/or stabilization of GQs; the resulting conformational changes impair RNA unraveling and release from the virion. Preliminary reports have been published.


Assuntos
Quadruplex G , Rhinovirus , Humanos , Rhinovirus/genética , Oligonucleotídeos , RNA Viral/genética , Pareamento de Bases
5.
Molecules ; 26(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199200

RESUMO

Glycan-targeting antibodies and pseudo-antibodies have been extensively studied for their stoichiometry, avidity, and their interactions with the rapidly modifying glycan shield of influenza A. Broadly neutralizing antiviral agents bind in the same order when they neutralize enveloped viruses regardless of the location of epitopes to the host receptor binding site. Herein, we investigated the binding of cyanovirin-N (CV-N) to surface-expressed glycoproteins such as those of human immunodeficiency virus (HIV) gp120, hemagglutinin (HA), and Ebola (GP)1,2 and compared their binding affinities with the binding response to the trimer-folded gp140 using surface plasmon resonance (SPR). Binding-site knockout variants of an engineered dimeric CV-N molecule (CVN2) revealed a binding affinity that correlated with the number of (high-) affinity binding sites. Binding curves were specific for the interaction with N-linked glycans upon binding with two low-affinity carbohydrate binding sites. This biologically active assembly of a domain-swapped CVN2, or monomeric CV-N, bound to HA with a maximum KD of 2.7 nM. All three envelope spike proteins were recognized at a nanomolar KD, whereas binding to HIV neutralizing 2G12 by targeting HA and Ebola GP1,2 was measured in the µM range and specific for the bivalent binding scheme in SPR. In conclusion, invariant structural protein patterns provide a substrate for affinity maturation in the membrane-anchored HA regions, as well as the glycan shield on the membrane-distal HA top part. They can also induce high-affinity binding in antiviral CV-N to HA at two sites, and CVN2 binding is achieved at low-affinity binding sites.


Assuntos
Proteínas de Bactérias/metabolismo , Ebolavirus/metabolismo , HIV-1/metabolismo , Orthomyxoviridae/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas de Bactérias/farmacologia , Sítios de Ligação , Ebolavirus/imunologia , Ebolavirus/isolamento & purificação , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/isolamento & purificação , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Influenza Humana/imunologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Orthomyxoviridae/imunologia , Orthomyxoviridae/isolamento & purificação , Polissacarídeos/imunologia , Ligação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas do Envelope Viral/imunologia
6.
Magn Reson (Gott) ; 2(2): 557-569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905226

RESUMO

Among the numerous contributions of Geoffrey Bodenhausen to NMR spectroscopy, his developments in the field of spin-relaxation methodology and theory will definitely have a long lasting impact. Starting with his seminal contributions to the excitation of multiple-quantum coherences, he and his group thoroughly investigated the intricate relaxation properties of these "forbidden fruits" and developed experimental techniques to reveal the relevance of previously largely ignored cross-correlated relaxation (CCR) effects, as "the essential is invisible to the eyes". Here we consider CCR within the challenging context of intrinsically disordered proteins (IDPs) and emphasize its potential and relevance for the studies of structural dynamics of IDPs in the future years to come. Conventionally, dynamics of globularly folded proteins are modeled and understood as deviations from otherwise rigid structures tumbling in solution. However, with increasing protein flexibility, as observed for IDPs, this apparent dichotomy between structure and dynamics becomes blurred. Although complex dynamics and ensemble averaging might impair the extraction of mechanistic details even further, spin relaxation uniquely encodes a protein's structural memory. Due to significant methodological developments, such as high-dimensional non-uniform sampling techniques, spin relaxation in IDPs can now be monitored in unprecedented resolution. Not embedded within a rigid globular fold, conventional 15N spin probes might not suffice to capture the inherently local nature of IDP dynamics. To better describe and understand possible segmental motions of IDPs, we propose an experimental approach to detect the signature of anisotropic segmental dynamics by quantifying cross-correlated spin relaxation of individual 15N1HN and 13C'13Cα spin pairs. By adapting Geoffrey Bodenhausen's symmetrical reconversion principle to obtain zero frequency spectral density values, we can define and demonstrate more sensitive means to characterize anisotropic dynamics in IDPs.

7.
Chemistry ; 27(5): 1753-1767, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985764

RESUMO

NMR spectroscopy is a particularly informative method for studying protein structures and dynamics in solution; however, it is also one of the most time-consuming. Modern approaches to biomolecular NMR spectroscopy are based on lengthy multidimensional experiments, the duration of which grows exponentially with the number of dimensions. The experimental time may even be several days in the case of 3D and 4D spectra. Moreover, the experiment often has to be repeated under several different conditions, for example, to measure the temperature-dependent effects in a spectrum (temperature coefficients (TCs)). Herein, a new approach that involves joint sampling of indirect evolution times and temperature is proposed. This allows TCs to be measured through 3D spectra in even less time than that needed to acquire a single spectrum by using the conventional approach. Two signal processing methods that are complementary, in terms of sensitivity and resolution, 1) dividing data into overlapping subsets followed by compressed sensing reconstruction, and 2) treating the complete data set with a variant of the Radon transform, are proposed. The temperature-swept 3D HNCO spectra of two intrinsically disordered proteins, osteopontin and CD44 cytoplasmic tail, show that this new approach makes it possible to determine TCs and their non-linearities effectively. Non-linearities, which indicate the presence of a compact state, are particularly interesting. The complete package of data acquisition and processing software for this new approach are provided.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Temperatura
8.
Chemphyschem ; 22(1): 18-28, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33119214

RESUMO

Crucial to the function of proteins is their existence as conformational ensembles sampling numerous and structurally diverse substates. Despite this widely accepted notion there is still a high demand for meaningful and reliable approaches to characterize protein ensembles in solution. As it is usually conducted in solution, NMR spectroscopy offers unique possibilities to address this challenge. Particularly, cross-correlated relaxation (CCR) effects have long been established to encode both protein structure and dynamics in a compelling manner. However, this wealth of information often limits their use in practice as structure and dynamics might prove difficult to disentangle. Using a modern Maximum Entropy (MaxEnt) reweighting approach to interpret CCR rates of Ubiquitin, we demonstrate that these uncertainties do not necessarily impair resolving CCR-encoded structural information. Instead, a suitable balance between complementary CCR experiments and prior information is found to be the most crucial factor in mapping backbone dihedral angle distributions. Experimental and systematic deviations such as oversimplified dynamics appear to be of minor importance. Using Ubiquitin as an example, we demonstrate that CCR rates are capable of characterizing rigid and flexible residues alike, indicating their unharnessed potential in studying disordered proteins.


Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Entropia , Conformação Proteica
9.
RSC Adv ; 10(19): 11079-11087, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495330

RESUMO

Cyanovirin-N (CV-N) has been shown to reveal broad neutralizing activity against human immunodeficiency virus (HIV) and to specifically bind Manα(1→2)Manα units exposed on various glycoproteins of enveloped viruses, such as influenza hemagglutinin (HA) and Ebola glycoprotein. Chemically synthesized dimannosylated HA peptides bound domain-swapped and dimeric CV-N with either four disulfide-bonds (Cys-Cys), or three Cys-Cys bonds and an intact fold of the high-affinity binding site at an equilibrium dissociation constant K D of 10 µM. Cys-Cys mutagenesis with ion-pairing amino-acids glutamic acid and arginine was calculated by in silico structure-based protein design and allowed for recognizing dimannose and dimannosylated peptide binding to low-affinity binding sites (K D ≈ 11 µM for one C58-C73 bond, and binding to dimannosylated peptide). In comparison, binding to HA was achieved based on one ion-pairing C58E-C73R substitution at K D = 275 nM, and K D = 5 µM for two C58E-C73R substitutions. We were utilizing a triazole bioisostere linkage to form the respective mannosylated-derivative on the HA peptide sequence of residues glutamine, glycine, and glutamic acid. Thus, mono- and dimannosylated peptides with N-terminal cysteine facilitated site-specific interactions with HA peptides, mimicking a naturally found N-linked glycosylation site on the HA head domain.

10.
J Mol Biol ; 432(9): 3093-3111, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31794728

RESUMO

Intrinsically disordered proteins (IDPs) carry out many biological functions. They lack a stable three-dimensional structure, but rather adopt many different conformations in dynamic equilibrium. The interplay between local dynamics and global rearrangements is key for their function. In IDPs, proline residues are significantly enriched. Given their unique physicochemical and structural properties, a more detailed understanding of their potential role in stabilizing partially folded states in IDPs is highly desirable. Nuclear magnetic resonance (NMR) spectroscopy, and in particular 13C-detected NMR, is especially suitable to address these questions. We applied a 13C-detected strategy to study Osteopontin, a largely disordered IDP with a central compact region. By using the exquisite sensitivity and spectral resolution of these novel techniques, we gained unprecedented insight into cis-Pro populations, their local structural dynamics, and their role in mediating long-range contacts. Our findings clearly call for a reassessment of the structural and functional role of proline residues in IDPs. The emerging picture shows that proline residues have ambivalent structural roles. They are not simply disorder promoters but rather can, depending on the primary sequence context, act as nucleation sites for structural compaction in IDPs. These unexpected features provide a versatile mechanistic toolbox to enrich the conformational ensembles of IDPs with specific features for adapting to changing molecular and cellular environments.


Assuntos
Coturnix/metabolismo , Osteopontina/química , Prolina/genética , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Mutação , Ressonância Magnética Nuclear Biomolecular , Osteopontina/genética , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
11.
J Biol Chem ; 292(43): 17643-17657, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28864776

RESUMO

N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD-BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein-protein interactions by intramolecular mimicry.


Assuntos
Histonas/química , Proteínas/química , Histonas/genética , Histonas/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteínas/metabolismo , Fatores Genéricos de Transcrição
12.
Angew Chem Int Ed Engl ; 55(39): 12008-12, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27533469

RESUMO

In this work an improved stable isotope labeling protocol for nucleic acids is introduced. The novel building blocks eliminate/minimize homonuclear (13) C and (1) H scalar couplings thus allowing proton relaxation dispersion (RD) experiments to report accurately on the chemical exchange of nucleic acids. Using site-specific (2) H and (13) C labeling, spin topologies are introduced into DNA and RNA that make (1) H relaxation dispersion experiments applicable in a straightforward manner. The novel RNA/DNA building blocks were successfully incorporated into two nucleic acids. The A-site RNA was previously shown to undergo a two site exchange process in the micro- to millisecond time regime. Using proton relaxation dispersion experiments the exchange parameters determined earlier could be recapitulated, thus validating the proposed approach. We further investigated the dynamics of the cTAR DNA, a DNA transcript that is involved in the viral replication cycle of HIV-1. Again, an exchange process could be characterized and quantified. This shows the general applicablility of the novel labeling scheme for (1) H RD experiments of nucleic acids.


Assuntos
DNA/química , Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , RNA/química , Sequência de Bases , Conformação de Ácido Nucleico , Prótons
13.
J Biol Chem ; 291(36): 18799-808, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27402840

RESUMO

Selective autophagy contributes to cellular homeostasis by delivering harmful material into the lysosomal system for degradation via vesicular intermediates referred to as autophagosomes. The cytoplasm-to-vacuole targeting pathway is a variant of selective autophagy in Saccharomyces cerevisiae during which hydrolases such as prApe1 are transported into the vacuole. In general, selectivity is achieved by autophagic cargo receptors that link the cargo to autophagosomal membranes because of their ability to simultaneously interact with the cargo and Atg8 proteins that coat the membrane. The Atg19 receptor contains multiple Atg8 interaction sites in its C terminus in addition to a canonical Atg8-interacting LC3-interacting region (LIR, with LC3 being a homolog of Atg8) motif, but their mode of interaction with Atg8 is unclear. Here we show, using a combination of NMR, microscopy-based interaction assays, and prApe1 processing experiments, that two additional sites interact with Atg8 in a LIR-like and thus mutually exclusive manner. We term these motifs accessory LIR motifs because their affinities are lower than that of the canonical LIR motif. Thus, one Atg19 molecule has the ability to interact with multiple Atg8 proteins simultaneously, resulting in a high-avidity interaction that may confer specific binding to the Atg8-coated autophagosomal membrane on which Atg8 is concentrated.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/química , Proteínas Relacionadas à Autofagia/química , Receptores de Superfície Celular/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Motivos de Aminoácidos , Autofagia , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
14.
Protein Sci ; 24(12): 1979-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26384734

RESUMO

Messenger RNA is recruited to the eukaryotic ribosome by a complex including the eukaryotic initiation factor (eIF) 4E (the cap-binding protein), the scaffold protein eIF4G and the RNA helicase eIF4A. To shut-off host-cell protein synthesis, eIF4G is cleaved during picornaviral infection by a virally encoded proteinase; the structural basis of this reaction and its stimulation by eIF4E is unclear. We have structurally and biochemically investigated the interaction of purified foot-and-mouth disease virus (FMDV) leader proteinase (Lb(pro)), human rhinovirus 2 (HRV2) 2A proteinase (2A(pro)) and coxsackievirus B4 (CVB4) 2A(pro) with purified eIF4GII, eIF4E and the eIF4GII/eIF4E complex. Using nuclear magnetic resonance (NMR), we completed (13)C/(15) N sequential backbone assignment of human eIF4GII residues 551-745 and examined their binding to murine eIF4E. eIF4GII551-745 is intrinsically unstructured and remains so when bound to eIF4E. NMR and biophysical techniques for determining stoichiometry and binding constants revealed that the papain-like Lb(pro) only forms a stable complex with eIF4GII(551-745) in the presence of eIF4E, with KD values in the low nanomolar range; Lb(pro) contacts both eIF4GII and eIF4E. Furthermore, the unrelated chymotrypsin-like 2A(pro) from HRV2 and CVB4 also build a stable complex with eIF4GII/eIF4E, but with K(D) values in the low micromolar range. The HRV2 enzyme also forms a stable complex with eIF4E; however, none of the proteinases tested complex stably with eIF4GII alone. Thus, these three picornaviral proteinases have independently evolved to establish distinct triangular heterotrimeric protein complexes that may actively target ribosomes involved in mRNA recruitment to ensure efficient host cell shut-off.


Assuntos
Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Picornaviridae/enzimologia , Animais , Domínio Catalítico , Fator de Iniciação 4E em Eucariotos/metabolismo , Evolução Molecular , Interações Hospedeiro-Patógeno , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Picornaviridae/química , Picornaviridae/fisiologia , Ligação Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo
15.
Adv Exp Med Biol ; 870: 149-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26387102

RESUMO

Intrinsically disordered proteins (IDPs) are characterized by substantial conformational flexibility and thus not amenable to conventional structural biology techniques. Given their inherent structural flexibility NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development of NMR spectroscopy that couples advances in spin physics and chemistry with a broad range of applications. This chapter will summarize key advances in NMR methodology. Despite the availability of efficient (multi-dimensional) NMR experiments for signal assignment of IDPs it is discussed that NMR of larger and more complex IDPs demands spectral simplification strategies capitalizing on specific isotope-labeling strategies. Prototypical applications of isotope labeling-strategies are described. Since IDP-ligand association and dissociation processes frequently occur on time scales that are amenable to NMR spectroscopy we describe in detail the application of CPMG relaxation dispersion techniques to studies of IDP protein binding. Finally, we demonstrate that the complementary usage of NMR and EPR data provide a more comprehensive picture about the conformational states of IDPs and can be employed to analyze the conformational ensembles of IDPs.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Conformação Proteica
16.
J Biol Chem ; 289(6): 3724-35, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24362019

RESUMO

TbBILBO1 is the only known component of the flagellar pocket collar, a cytoskeletal barrier element found in trypanosomes. The N-terminal domain (NTD) of TbBILBO1 was found to be dispensable for targeting of the protein in vivo. However, overexpression of constructs lacking the NTD caused complete growth inhibition, implying an essential requirement for this domain. A high resolution structure of the NTD of TbBILBO1 showed that it forms a ubiquitin-like fold with a conserved surface patch. Mutagenesis of this patch recapitulated the phenotypic effects of deleting the entire domain and was found to cause cell death. The surface patch on the NTD of TbBILBO1 is therefore a potential drug target.


Assuntos
Proteínas de Protozoários/química , Trypanosoma brucei brucei/química , Mutagênese , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Deleção de Sequência , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
17.
Virology ; 443(2): 271-7, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23756127

RESUMO

The foot-and-mouth disease virus leader proteinase (Lb(pro)) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb(pro) L200F provide structural evidence for intramolecular self-processing. (15)N-HSQC measurements of Lb(pro) L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb(pro), lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb(pro), stably binds its own CTE. Parts of the ß-sheet domains but none of the α-helical domains of Lb(pro) and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its ß-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb(pro).


Assuntos
Endopeptidases/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/enzimologia , Proteínas não Estruturais Virais/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Endopeptidases/química , Endopeptidases/genética , Vírus da Febre Aftosa/genética , Modelos Moleculares , Mutação , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Suínos/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
18.
Nucleic Acids Res ; 40(16): 8072-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718981

RESUMO

In enteric bacteria, many small regulatory RNAs (sRNAs) associate with the RNA chaperone host factor Q (Hfq) and often require the protein for regulation of target mRNAs. Previous studies suggested that the hexameric Escherichia coli Hfq (Hfq(Ec)) binds sRNAs on the proximal site, whereas the distal site has been implicated in Hfq-mRNA interactions. Employing a combination of small angle X-ray scattering, nuclear magnetic resonance and biochemical approaches, we report the structural analysis of a 1:1 complex of Hfq(Ec) with a 34-nt-long subsequence of a natural substrate sRNA, DsrA (DsrA(34)). This sRNA is involved in post-transcriptional regulation of the E. coli rpoS mRNA encoding the stationary phase sigma factor RpoS. The molecular envelopes of Hfq(Ec) in complex with DsrA(34) revealed an overall asymmetric shape of the complex in solution with the protein maintaining its doughnut-like structure, whereas the extended DsrA(34) is flexible and displays an ensemble of different spatial arrangements. These results are discussed in terms of a model, wherein the structural flexibility of RNA ligands bound to Hfq stochastically facilitates base pairing and provides the foundation for the RNA chaperone function inherent to Hfq.


Assuntos
Proteínas de Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , Pequeno RNA não Traduzido/química , Luz , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Ligação Proteica , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
J Biomol NMR ; 53(2): 149-59, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22580892

RESUMO

A method for generating protein backbone models from backbone only NMR data is presented, which is based on molecular fragment replacement (MFR). In a first step, the PDB database is mined for homologous peptide fragments using experimental backbone-only data i.e. backbone chemical shifts (CS) and residual dipolar couplings (RDC). Second, this fragment library is refined against the experimental restraints. Finally, the fragments are assembled into a protein backbone fold using a rigid body docking algorithm using the RDCs as restraints. For improved performance, backbone nuclear Overhauser effects (NOEs) may be included at that stage. Compared to previous implementations of MFR-derived structure determination protocols this model-building algorithm offers improved stability and reliability. Furthermore, relative to CS-ROSETTA based methods, it provides faster performance and straightforward implementation with the option to easily include further types of restraints and additional energy terms.


Assuntos
Algoritmos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Conformação Proteica , Software
20.
Beilstein J Org Chem ; 8: 448-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509216

RESUMO

A novel reporter system, which is applicable to the (19)F NMR investigation of protein interactions, is presented. This approach uses 2-F-labeled maltose as a spy ligand to indirectly probe protein-ligand or protein-protein interactions of proteins fused or tagged to the maltose-binding protein (MBP). The key feature is the simultaneous NMR observation of both (19)F NMR signals of gluco/manno-type-2-F-maltose-isomers; one isomer (α-gluco-type) binds to MBP and senses the protein interaction, and the nonbinding isomers (ß-gluco- and/or α/ß-manno-type) are utilized as internal references. Moreover, this reporter system was used for relative affinity studies of fluorinated and nonfluorinated carbohydrates to the maltose-binding protein, which were found to be in perfect agreement with published X-ray data. The results of the NMR competition experiments together with the established correlation between (19)F chemical shift data and molecular interaction patterns, suggest valuable applications for studies of protein-ligand interaction interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...