Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Helicobacter ; 28(4): e12987, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37139985

RESUMO

BACKGROUND AND AIMS: Helicobacter pylori (H. pylori)-induced gastric pathology involves remodeling of extracellular matrix mediated by aberrant activity of matrix metalloproteinases (MMPs). We have previously shown that in vitro H. pylori infection leads to MMP-3 and MMP-9 overexpression, associated with phosphorylation of bacterial oncoprotein CagA. We extended these findings in an in vivo model of H. pylori infection and further assessed the involvement of MAPK pathways in MMP expression. MATERIALS AND METHODS: C57BL/6 mice were infected with H. pylori strains HPARE, HPARE ΔCagA, and SS1, for 6 and 9 months. Transcriptional expression of Mmp-3 and Mmp-9 was evaluated via qPCR while respective protein levels in the gastric mucosa were determined immunohistochemically. Epithelial cell lines AGS and GES-1 were infected with H. pylori strain P12 in the presence of chemical inhibitors of JNK, ERK1/2, and p38 pathways, for 24 h. mRNA and protein expression of MMP-3 and MMP-9 were determined via qPCR and Western blot, respectively. RESULTS: We observed transcriptional activation of Mmp-3 and Mmp-9 as well as aberrant MMP-3 and MMP-9 protein expression in murine gastric tissue following H. pylori infection. CagA expression was associated with MMP upregulation, particularly during the early time points of infection. We found that inhibition of ERK1/2 resulted in reduced mRNA and protein expression of MMP-3 and MMP-9 during H. pylori infection, in both cell lines. Expressed protein levels of both MMPs were also found reduced in the presence of JNK pathway inhibitors in both cell lines. However, p38 inhibition resulted in a more complex effect, probably attributed to the accumulation of phospho-p38 and increased phospho-ERK1/2 activity due to crosstalk between MAPK pathways. CONCLUSIONS: H. pylori colonization leads to the upregulation of MMP-3 and MMP-9 in vivo, which primarily involves ERK1/2 and JNK pathways. Therefore, their inhibition may potentially offer a protective effect against gastric carcinogenesis and metastasis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Metaloproteinase 3 da Matriz , Metaloproteinase 9 da Matriz , Animais , Camundongos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Células Epiteliais/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Sistema de Sinalização das MAP Quinases , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro
2.
Microorganisms ; 8(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339161

RESUMO

Helicobacter pylori infection induces a plethora of DNA damages. Gastric epithelial cells, in order to maintain genomic integrity, require an integrous DNA damage repair (DDR) machinery, which, however, is reported to be modulated by the infection. CagA is a major H. pylori virulence factor, associated with increased risk for gastric carcinogenesis. Its pathogenic activity is partly regulated by phosphorylation on EPIYA motifs. Our aim was to identify effects of H. pylori infection and CagA on DDR, investigating the transcriptome of AGS cells, infected with wild-type, ΔCagA and EPIYA-phosphorylation-defective strains. Upon RNA-Seq-based transcriptomic analysis, we observed that a notable number of DDR genes were found deregulated during the infection, potentially resulting to base excision repair and mismatch repair compromise and an intricate deregulation of nucleotide excision repair, homologous recombination and non-homologous end-joining. Transcriptome observations were further investigated on the protein expression level, utilizing infections of AGS and GES-1 cells. We observed that CagA contributed to the downregulation of Nth Like DNA Glycosylase 1 (NTHL1), MutY DNA Glycosylase (MUTYH), Flap Structure-Specific Endonuclease 1 (FEN1), RAD51 Recombinase, DNA Polymerase Delta Catalytic Subunit (POLD1), and DNA Ligase 1 (LIG1) and, contrary to transcriptome results, Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) upregulation. Our study accentuates the role of CagA as a significant contributor of H. pylori infection-mediated DDR modulation, potentially disrupting the balance between DNA damage and repair, thus favoring genomic instability and carcinogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...