Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(4): 614-621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332025

RESUMO

The Kunming-Montreal Global Biodiversity Framework (GBF) of the UN Convention on Biological Diversity set the agenda for global aspirations and action to reverse biodiversity loss. The GBF includes an explicit goal for maintaining and restoring biodiversity, encompassing ecosystems, species and genetic diversity (goal A), targets for ecosystem protection and restoration and headline indicators to track progress and guide action1. One of the headline indicators is the Red List of Ecosystems2, the global standard for ecosystem risk assessment. The Red List of Ecosystems provides a systematic framework for collating, analysing and synthesizing data on ecosystems, including their distribution, integrity and risk of collapse3. Here, we examine how it can contribute to implementing the GBF, as well as monitoring progress. We find that the Red List of Ecosystems provides common theory and practical data, while fostering collaboration, cross-sector cooperation and knowledge sharing, with important roles in 16 of the 23 targets. In particular, ecosystem maps, descriptions and risk categories are key to spatial planning for halting loss, restoration and protection (targets 1, 2 and 3). The Red List of Ecosystems is therefore well-placed to aid Parties to the GBF as they assess, plan and act to achieve the targets and goals. We outline future work to further strengthen this potential and improve biodiversity outcomes, including expanding spatial coverage of Red List of Ecosystems assessments and partnerships between practitioners, policy-makers and scientists.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Medição de Risco
2.
Mol Ecol ; 12(11): 3179-84, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14629397

RESUMO

The relationships among Myoxocephalus quadricornis complex fish from Arctic coastal waters and from 'glacial relict' populations in Nearctic and Palearctic postglacial lakes were assessed using mtDNA sequence data (1978 bp). A principal phylogeographical split separated the North American continental deepwater sculpin (M. q. thompsonii) from a lineage of the Arctic marine and North European landlocked populations of the fourhorn sculpin (M. q. quadricornis). The North American continental invasion took place several glaciation cycles ago in the Early-to-Middle Pleistocene (0.9% sequence divergence); the divergence of the European and Arctic populations was somewhat later (0.5% divergence). The Nearctic-Palearctic freshwater vicariance in Myoxocephalus, however, appears clearly younger than in similarly distributed 'glacial relict' crustacean taxa; the phylogeographical structure is more similar to that in other northern Holarctic freshwater fish complexes.


Assuntos
Meio Ambiente , Peixes/genética , Geografia , Filogenia , Animais , Regiões Árticas , Sequência de Bases , Primers do DNA , DNA Mitocondrial/genética , Haplótipos/genética , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular
3.
Mol Phylogenet Evol ; 27(1): 143-55, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12679079

RESUMO

In the ancient Lake Baikal in East Siberia, cottoid fishes have diversified into an endemic flock of 33 species. From an ancestral shallow-water, benthic life-style, Baikalian cottoids have shifted to deep-water life in environments even below 1500 m, and also colonized the pelagic habitat. We examined phylogenetic relationships among 22 Baikalian and 10 extra-Baikalian cottoid taxa using a total of 2822 bp of mitochondrial DNA sequence, from complete sequences of ATPase 8 and 6 and cytochrome b genes and the control region. Unlike in earlier studies, we found strong support for a monophyly of the whole endemic Baikalian cottoid diversity. The Baikalian clade, currently assigned to three families and 12 genera, appears to be nested within the Holarctic freshwater genus Cottus. In the molecular phylogeny, all but one of the current Baikalian genera formed well-supported monophyletic groups. However, the topology was inconsistent with the present morphology-based familial subdivision; particularly in positioning the genus Batrachocottus of Cottidae within Abyssocottidae. The branching order of the Baikalian genera could not be resolved completely, however; short basal branches indicate rapid diversification early in the history of the species flock. Using synonymous divergence rates from other fish species for calibration, the diversification of the Baikalian cottoids seems to have started in the Pliocene or early Pleistocene.


Assuntos
DNA Mitocondrial/genética , Peixes/classificação , Variação Genética/genética , Filogenia , Animais , Composição de Bases , Sequência de Bases , Análise por Conglomerados , Meio Ambiente , Evolução Molecular , Peixes/genética , Funções Verossimilhança , Dados de Sequência Molecular , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...