Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Med ; 29(4): 950-962, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37069360

RESUMO

Perivascular space (PVS) burden is an emerging, poorly understood, magnetic resonance imaging marker of cerebral small vessel disease, a leading cause of stroke and dementia. Genome-wide association studies in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 96.9% European ancestry) revealed 24 genome-wide significant PVS risk loci, mainly in the white matter. These were associated with white matter PVS already in young adults (N = 1,748; 22.1 ± 2.3 yr) and were enriched in early-onset leukodystrophy genes and genes expressed in fetal brain endothelial cells, suggesting early-life mechanisms. In total, 53% of white matter PVS risk loci showed nominally significant associations (27% after multiple-testing correction) in a Japanese population-based cohort (N = 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal associations of high blood pressure with basal ganglia and hippocampal PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting for blood pressure. Our findings provide insight into the biology of PVS and cerebral small vessel disease, pointing to pathways involving extracellular matrix, membrane transport and developmental processes, and the potential for genetically informed prioritization of drug targets.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Humanos , Células Endoteliais/patologia , Estudo de Associação Genômica Ampla , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/complicações , Imageamento por Ressonância Magnética/métodos , Genômica
2.
Nat Hum Behav ; 7(1): 65-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36138222

RESUMO

Assortative mating (AM) is a pattern characterized by phenotypic similarities between mating partners. Detecting the evidence of AM has been challenging due to the lack of large-scale datasets that include phenotypic data on both partners, especially in populations of non-European ancestries. Gametic phase disequilibrium between trait-associated alleles is a signature of parental AM on a polygenic trait, which can be detected even without partner data. Here, using polygenic scores for 81 traits in the Japanese population using BioBank Japan Project genome-wide association studies data (n = 172,270), we found evidence of AM on the liability to type 2 diabetes and coronary artery disease, as well as on dietary habits. In cross-population comparison using United Kingdom Biobank data (n = 337,139) we found shared but heterogeneous impacts of AM between populations.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Humanos , Diabetes Mellitus Tipo 2/genética , População do Leste Asiático , Fenótipo , Reprodução/genética , Herança Multifatorial , Casamento , Genética Populacional , Japão
3.
Cell Genom ; 2(10): 100190, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36778001

RESUMO

Genomics-driven drug discovery is indispensable for accelerating the development of novel therapeutic targets. However, the drug discovery framework based on evidence from genome-wide association studies (GWASs) has not been established, especially for cross-population GWAS meta-analysis. Here, we introduce a practical guideline for genomics-driven drug discovery for cross-population meta-analysis, as lessons from the Global Biobank Meta-analysis Initiative (GBMI). Our drug discovery framework encompassed three methodologies and was applied to the 13 common diseases targeted by GBMI (N mean = 1,329,242). Individual methodologies complementarily prioritized drugs and drug targets, which were systematically validated by referring previously known drug-disease relationships. Integration of the three methodologies provided a comprehensive catalog of candidate drugs for repositioning, nominating promising drug candidates targeting the genes involved in the coagulation process for venous thromboembolism and the interleukin-4 and interleukin-13 signaling pathway for gout. Our study highlighted key factors for successful genomics-driven drug discovery using cross-population meta-analyses.

4.
Nat Genet ; 53(10): 1415-1424, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594039

RESUMO

Current genome-wide association studies do not yet capture sufficient diversity in populations and scope of phenotypes. To expand an atlas of genetic associations in non-European populations, we conducted 220 deep-phenotype genome-wide association studies (diseases, biomarkers and medication usage) in BioBank Japan (n = 179,000), by incorporating past medical history and text-mining of electronic medical records. Meta-analyses with the UK Biobank and FinnGen (ntotal = 628,000) identified ~5,000 new loci, which improved the resolution of the genomic map of human traits. This atlas elucidated the landscape of pleiotropy as represented by the major histocompatibility complex locus, where we conducted HLA fine-mapping. Finally, we performed statistical decomposition of matrices of phenome-wide summary statistics, and identified latent genetic components, which pinpointed responsible variants and biological mechanisms underlying current disease classifications across populations. The decomposed components enabled genetically informed subtyping of similar diseases (for example, allergic diseases). Our study suggests a potential avenue for hypothesis-free re-investigation of human diseases through genetics.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Sistema ABO de Grupos Sanguíneos/genética , Bancos de Espécimes Biológicos , Loci Gênicos , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Humanos , Complexo Principal de Histocompatibilidade/genética , Metanálise como Assunto , Mutação/genética , Fenótipo
5.
Inflamm Regen ; 41(1): 18, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140035

RESUMO

The prediction of disease risks is an essential part of personalized medicine, which includes early disease detection, prevention, and intervention. The polygenic risk score (PRS) has become the standard for quantifying genetic liability in predicting disease risks. PRS utilizes single-nucleotide polymorphisms (SNPs) with genetic risks elucidated by genome-wide association studies (GWASs) and is calculated as weighted sum scores of these SNPs with genetic risks using their effect sizes from GWASs as their weights. The utilities of PRS have been explored in many common diseases, such as cancer, coronary artery disease, obesity, and diabetes, and in various non-disease traits, such as clinical biomarkers. These applications demonstrated that PRS could identify a high-risk subgroup of these diseases as a predictive biomarker and provide information on modifiable risk factors driving health outcomes. On the other hand, there are several limitations to implementing PRSs in clinical practice, such as biased sensitivity for the ethnic background of PRS calculation and geographical differences even in the same population groups. Also, it remains unclear which method is the most suitable for the prediction with high accuracy among numerous PRS methods developed so far. Although further improvements of its comprehensiveness and generalizability will be needed for its clinical implementation in the future, PRS will be a powerful tool for therapeutic interventions and lifestyle recommendations in a wide range of diseases. Thus, it may ultimately improve the health of an entire population in the future.

6.
Hum Mol Genet ; 30(3-4): 294-304, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33577681

RESUMO

Approaches toward new therapeutics using disease genomics, such as genome-wide association study (GWAS), are anticipated. Here, we developed Trans-Phar [integration of transcriptome-wide association study (TWAS) and pharmacological database], achieving in silico screening of compounds from a large-scale pharmacological database (L1000 Connectivity Map), which have inverse expression profiles compared with tissue-specific genetically regulated gene expression. Firstly we confirmed the statistical robustness by the application of the null GWAS data and enrichment in the true-positive drug-disease relationships by the application of UK-Biobank GWAS summary statistics in broad disease categories, then we applied the GWAS summary statistics of large-scale European meta-analysis (17 traits; naverage = 201 849) and the hospitalized COVID-19 (n = 900 687), which has urgent need for drug development. We detected potential therapeutic compounds as well as anisomycin in schizophrenia (false discovery rate (FDR)-q = 0.056) and verapamil in hospitalized COVID-19 (FDR-q = 0.068) as top-associated compounds. This approach could be effective in disease genomics-driven drug development.


Assuntos
Tratamento Farmacológico da COVID-19 , Desenvolvimento de Medicamentos/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Esquizofrenia/tratamento farmacológico , Transcriptoma/genética , Anisomicina/farmacologia , Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Genômica/métodos , Humanos , Preparações Farmacêuticas , Software , Verapamil/farmacologia
7.
Exp Eye Res ; 193: 107997, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32165157

RESUMO

We aimed to assess the neuroprotective effect of a pyruvate dehydrogenase kinase (PDK) inhibitor, Nov3r after ischemia/reperfusion (IR) injury in rats. IR injury was induced by applying 150 mmHg of intraocular pressure for 50 min. Nov3r was orally administered (100 mg/kg) 3 h before and 24 h after IR injury. TUNEL-positive cells increased and immunoreactive RBPMS-positive cells decreased in the rat retinas after IR injury. Administration of Nov3r significantly ameliorated the increase in TUNEL-positive cells and prevented the RBPMS-positive cell decrease. Similarly, the number of IR-induced Iba1-positive microglial cells was significantly reduced with Nov3r treatment. Among metabolic parameters, IR damage induced the elevation of lactate and pyruvate, and the reduction of ATP. Oral administration of Nov3r ameliorated these changes. Our data suggest that the Nov3r had a retinal neuroprotective effect in IR injury in rats. This finding suggests that the regulation of pyruvate dehydrogenase (PDH) activity has potential therapeutic value by enabling metabolic reprograming in diseases associated with ischemic retinal damage, such as diabetic retinopathy, retinopathy of prematurity, retinal vein occlusion, ischemic optic neuropathy and glaucoma.


Assuntos
Metabolismo Energético/fisiologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Doenças Retinianas/prevenção & controle , Células Ganglionares da Retina/patologia , Animais , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Células Ganglionares da Retina/efeitos dos fármacos
8.
Mol Biol Evol ; 37(5): 1306-1316, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31957793

RESUMO

Elucidation of natural selection signatures and relationships with phenotype spectra is important to understand adaptive evolution of modern humans. Here, we conducted a genome-wide scan of selection signatures of the Japanese population by estimating locus-specific time to the most recent common ancestor using the ascertained sequentially Markovian coalescent (ASMC), from the biobank-based large-scale genome-wide association study data of 170,882 subjects. We identified 29 genetic loci with selection signatures satisfying the genome-wide significance. The signatures were most evident at the alcohol dehydrogenase (ADH) gene cluster locus at 4q23 (PASMC = 2.2 × 10-36), followed by relatively strong selection at the FAM96A (15q22), MYOF (10q23), 13q21, GRIA2 (4q32), and ASAP2 (2p25) loci (PASMC < 1.0 × 10-10). The additional analysis interrogating extended haplotypes (integrated haplotype score) showed robust concordance of the detected signatures, contributing to fine-mapping of the genes, and provided allelic directional insights into selection pressure (e.g., positive selection for ADH1B-Arg48His and HLA-DPB1*04:01). The phenome-wide selection enrichment analysis with the trait-associated variants identified a variety of the modern human phenotypes involved in the adaptation of Japanese. We observed population-specific evidence of enrichment with the alcohol-related phenotypes, anthropometric and biochemical clinical measurements, and immune-related diseases, differently from the findings in Europeans using the UK Biobank resource. Our study demonstrated population-specific features of the selection signatures in Japanese, highlighting a value of the natural selection study using the nation-wide biobank-scale genome and phenotype data.


Assuntos
Povo Asiático/genética , Genoma Humano , Seleção Genética , Estudo de Associação Genômica Ampla , Humanos , Cadeias de Markov , Fenótipo
9.
Sci Rep ; 8(1): 4737, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549314

RESUMO

Adipokinetic hormone (AKH), an analog of mammalian glucagon, functions in supplying the required energy by releasing lipids and carbohydrates from the fat body into the hemolymph. Our previous study showed that AKH receptor (AKHR) knockdown in the two-spotted cricket Gryllus bimaculatus decreased hemolymph lipid levels and increased its feeding frequency. To reveal underlying mechanisms by which AKH signaling modulates lipid homeostasis, we analyzed the fatty acid composition as the lipid structure in the crickets. AKH administration significantly increased the proportion of unsaturated fatty acids (USFAs) to total fatty acids with decrease of the saturated fatty acids (SFAs) in hemolymph, while these proportions were inversely changed in RNA interference-mediated AKHR-knockdowned (AKHRRNAi) crickets. Interestingly, knockdown of hormone-sensitive lipase (Hsl) by RNAi (HslRNAi) affected the proportion of USFAs and SFAs in a similar manner to that observed in AKHRRNAi crickets. AKH administration in HslRNAi crickets did not change hemolymph fatty acid composition, indicating that AKH signaling critically altered fatty acid composition in the hemolymph through Hsl. In addition, a choice assay revealed that AKHRRNAi significantly increases the preference of USFAs. These data indicate that hemolymph lipid level and composition were modulated by AKH signaling with a complementary feeding behavior toward USFAs.


Assuntos
Dieta , Ácidos Graxos/metabolismo , Gryllidae/metabolismo , Hemolinfa/metabolismo , Hormônios de Inseto/farmacologia , Lipídeos/análise , Oligopeptídeos/farmacologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Animais , Gryllidae/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos , Homeostase , Ácido Pirrolidonocarboxílico/farmacologia
10.
PLoS One ; 11(5): e0154841, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144650

RESUMO

Insect feeding behavior is regulated by many intrinsic factors, including hemolymph nutrient levels. Adipokinetic hormone (AKH) is a peptide factor that modulates hemolymph nutrient levels and regulates the nutritional state of insects by triggering the transfer of lipids into the hemolymph. We recently demonstrated that RNA interference (RNAi)-mediated knockdown of the AKH receptor (AKHR) reduces hemolymph lipid levels, causing an increase in the feeding frequency of the two-spotted cricket, Gryllus bimaculatus. This result indicated that reduced hemolymph lipid levels might motivate crickets to feed. In the present study, to elucidate whether hemolymph lipid levels contribute to insect feeding behavior, we attempted to manipulate hemolymph lipid levels via the lipophorin (Lp)-mediated lipid transferring system in G. bimaculatus. Of the constituent proteins in Lp, we focused on apolipophorin-III (GrybiApoLp-III) because of its possible role in facilitating lipid mobilization. First, we used RNAi to reduce the expression of GrybiApoLp-III. RNAi-mediated knockdown of GrybiApoLp-III had little effect on basal hemolymph lipid levels and the amount of food intake. In addition, hemolymph lipid levels remained static even after injecting AKH into GrybiApoLp-IIIRNAi crickets. These observations indicated that ApoLp-III does not maintain basal hemolymph lipid levels in crickets fed ad libitum, but is necessary for mobilizing lipid transfer into the hemolymph following AKH stimulation. Second, Lp (containing lipids) was injected into the hemolymph to induce a temporary increase in hemolymph lipid levels. Consequently, the initiation of feeding was delayed in a dose-dependent manner, indicating that increased hemolymph lipid levels reduced the motivation to feed. Taken together, these data validate the importance of basal hemolymph lipid levels in the control of energy homeostasis and for regulating feeding behavior in crickets.


Assuntos
Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Gryllidae/fisiologia , Hemolinfa/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Motivação/fisiologia , Animais , Apolipoproteínas , Corpo Adiposo/metabolismo , Gryllidae/metabolismo , Hemolinfa/metabolismo , Hormônios de Inseto/metabolismo , Larva/metabolismo , Larva/fisiologia , Lipoproteínas/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-22649403

RESUMO

In our previous report, we demonstrated the possibility that various regulatory neuropeptides influence feeding behavior in the silkworm, Bombyx mori. Among these feeding-related neuropeptides, short neuropeptide F (sNPF) exhibited feeding-accelerating activity when injected into B. mori larvae. Like other insect sNPFs, the deduced amino acid sequence of the cDNA encoding the sNPF precursor appears to produce multiple sNPF and sNPF-related peptides in B. mori. The presence of three sNPFs, sNPF-1, sNPF-2, and sNPF-3, in the brain of B. mori larvae was confirmed by direct MALDI-TOF mass spectrometric profiling. In addition, all three sNPFs are present in other larval ganglia. The presence of sNPF mRNA in the central nervous system (CNS) was also confirmed by Reverse transcription-polymerase chain reaction. Semi-quantitative analyses of sNPFs in the larval brain using matrix-assisted laser desorption ionization time-of-flight mass spectrometry further revealed that brain sNPF levels decrease in response to starvation, and that they recover with the resumption of feeding. These data suggest that sNPFs were depleted by the starvation process. Furthermore, food deprivation decreased the transcriptional levels of the sNPF receptor (BNGR-A10) in the brain and CNS, suggesting that the sNPF system is dependent on the feeding state of the insect and that the sNPF system may be linked to locomotor activity associated with foraging behavior. Since the injection of sNPFs accelerated the onset of feeding in B. mori larvae, we concluded that sNPFs are strongly related to feeding behavior. In addition, semi-quantitative MS analyses revealed that allatostatin, which is present in the larval brain, is also reduced in response to starvation, whereas the peptide level of Bommyosuppressin was not affected by different feeding states.

12.
Endocrinology ; 153(7): 3111-22, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22619358

RESUMO

Adipokinetic hormone (AKH) is a peptide hormone that regulates the nutritional state in insects by supporting the mobilization of lipids. In the present study, we manipulated AKH signaling to evaluate how metabolic state regulates feeding in an orthopteran insect, the two-spotted cricket, Gryllus bimaculatus. This was accomplished by RNA interference (RNAi) targeting the receptor gene for AKH [G. bimaculatus AKHR (GrybiAKHR)]. We found that the knockdown of GrybiAKHR by AKHR-double-stranded RNA treatment decreased the levels of 1,2-diacylglycerol and trehalose in the hemolymph, whereas it increased the level of triacylglycerol in the fat body. In addition, the knockdown of GrybiAKHR enhanced starvation resistance and increased food intake. Furthermore, direct observation of GrybiAKHR(RNAi) crickets revealed that the knockdown of GrybiAKHR increased feeding frequency but did not alter meal duration, whereas locomotor activity decreased. The increased frequency of feeding by GrybiAKHR(RNAi) crickets eventually resulted in an increase of food intake. These data demonstrate that the regulation of the metabolic state by AKH signaling affects feeding frequency, probably through nutritional control.


Assuntos
Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Receptores de Glucagon/genética , Sequência de Aminoácidos , Animais , Carboidratos/química , Clonagem Molecular , DNA Complementar/metabolismo , Proteínas de Drosophila/fisiologia , Comportamento Alimentar , Alimentos , Gryllidae , Hemolinfa/metabolismo , Lipídeos/química , Dados de Sequência Molecular , Peptídeos/química , Interferência de RNA , Receptores de Glucagon/fisiologia , Homologia de Sequência de Aminoácidos , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...