Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 218: 113928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38035973

RESUMO

The family Myristicaceae harbour mind-altering phenylpropanoids like myristicin, elemicin, safrole, tryptamine derivatives such as N,N-dimethyltryptamine (DMT) and 5-methoxy N,N-dimethyltryptamine (5-MeO-DMT) and ß-carbolines such as 1-methyl-6-methoxy-dihydro-ß-carboline and 2-methyl-6-methoxy-1,2,3,4-tetrahydro-ß-carboline. This study aimed to systematically review and propose the hypothetical biosynthetic pathways of hallucinogenic metabolites of Myristicaceae which have the potential to be used pharmaceutically. Relevant publications were retrieved from online databases, including Google Scholar, PubMed Central, Science Direct and the distribution of the hallucinogens among the family was compiled. The review revealed that the biosynthesis of serotonin in plants was catalysed by tryptamine 5-hydroxylase (T5H) and tryptophan 5-hydroxylase (TPH), whereas in invertebrates and vertebrates only by tryptophan 5-hydroxylase (TPH). Indolethylamine-N-methyltransferase catalyses the biosynthesis of DMT in plants and the brains of humans and other mammals. Caffeic acid 3-O-methyltransferase catalyses the biosynthesis of both phenylpropanoids and tryptamines in plants. All the hallucinogenic markers exhibited neuropsychiatric effects in humans as mechanistic convergence. The review noted that DMT, 5-MeO-DMT, and ß-carbolines were natural protectants against both plant stress and neurodegenerative human ailments. The protein sequence data of tryptophan 5-hydroxylase and tryptamine 5-hydroxylase retrieved from NCBI showed a co-evolutionary relationship in between animals and plants on the phylogenetic framework of a Maximum Parsimony tree. The review also demonstrates that the biosynthesis of serotonin, DMT, 5-MeO-DMT, 5-hydroxy dimethyltryptamine, and ß-carbolines in plants, as well as endogenous secretion of these compounds in the brain and blood of humans and rodents, reflects co-evolutionary mutualism in plants and humans.


Assuntos
Vias Biossintéticas , Alucinógenos , Animais , Humanos , Serotonina , Filogenia , Triptofano , Triptaminas , N,N-Dimetiltriptamina , Plantas , Carbolinas , Oxigenases de Função Mista , Mamíferos
2.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37885259

RESUMO

The three primary enzymes COX (cyclooxygenase), LOX (lipoxygenase) and CYT-P450 (cytochrome P450), which are part of the arachidonic inflammatory pathway, play crucial role in the development of asthma, rheumatoid arthritis and cardiovascular diseases. Ethnomedicinally, plant-derived chemicals have a major role in the treatment of fatal illnesses. Aquilaria malaccensis Lam. widely known as agarwood is prized for its fragrance and therapeutic properties. The phytochemicals and extracts of this plant have significant healing properties in the treatment of serious illnesses. In the current work, an in-silico approach including molecular docking, ADMET (absorption, distribution, metabolism, excretion and toxicity), molecular dynamics (MD) simulation and molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) was performed to screen 33 bioactive compounds from this plant against COX-2 and 5-LOX in order to find the most effective inhibitor. 2-(2-Phenylethyl)chromone was found to inhibit both 5-LOX and COX-2, showing the highest binding affinities (-9.1 kcal/mol and -9.0 kcal/mol, respectively) than standard Ibuprofen and nordihydroguaiaretic acid (NDGA). 2-(2-Phenylethyl)chromone showed the highest drug-likeness score and low risk of toxicity compared to other phytochemicals. MD modeling and MM-PBSA calculations showed that 2-(2-Phenylethyl)chromone had a strong persistent binding interaction with 5-LOX than COX-2, and this interaction is comparable to the bounded standards Ibuprofen and NDGA. From this study, we may infer that the 2-(2-Phenylethyl)chromone can serve as a potent inhibitor and has scope to be employed in the treatment of inflammatory ailments.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA