Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(8): e10349, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37539071

RESUMO

In pollen-limited plant communities, the foraging behavior of pollinators might mediate coexistence and competitive exclusion of plant species by determining which plants receive conspecific pollen. A key question is whether realistic pollinator foraging behavior promotes coexistence or exclusion of plant species. We use a simulation model to understand how pollinator foraging behavior impacts the coexistence dynamics of pollen-limited plants. To determine whether pollinators are likely to provide a biologically important coexistence mechanism, we compare our results to bee foraging data from the literature and from a novel experimental analysis. Model results indicate that strong specialization at the level of individual foraging paths is required to promote coexistence. However, few empirical studies have robustly quantified within-bout specialization. Species-level data suggest that foraging behavior is sufficient to permit pollinator-mediated coexistence in species-poor plant communities and possibly in diverse communities where congeneric plants co-occur. Our experiments using bumblebees show that individual-level specialization does exist, but not at levels sufficient to substantially impact coexistence dynamics. The literature on specialization within natural foraging paths suffers from key limitations, but overall suggests that pollinator-mediated coexistence should be rare in diverse plant communities.

2.
Sci Rep ; 9(1): 4705, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886330

RESUMO

Bee-pollinated plants face a dilemma in that bees both passively transport pollen grains among conspecific flowers and actively collect pollen to feed their larvae. Therefore, mechanisms that reduce pollen collection by bees have evolved in melittophilous plants. Malvaceae pollen is uncollectable for corbiculate bees which has previously been ascribed to pollen size, spines, and pollenkitt. We analysed the influence of pollen grain properties (diameter, spine length, spine density) on the collectability of echinate (spiny) pollen by bumble bees (Bombus terrestris). Workers individually foraging on one of eight plant species from six families performed significantly less pollen foraging on plants which have large, echinate pollen grains. Nevertheless, neither pollen grain size, spine length, nor spine density prove to be an absolute disqualifier for collectability. While pollen foragers did not shift to nectar collection but seized visiting flowers with uncollectable pollen, nectar foragers performed regular foraging bouts on these plants. Pollen that is uncollectable for corbiculate bees limits pollen depletion by generalist bumble bees and probably also honey bees while maintaining them as pollinators, which is an effective solution to the pollen dilemma. As previous assumptions about the impact of pollen morphology on its collectability are disproved, potentially determining factors are discussed.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Malvaceae/fisiologia , Pólen/ultraestrutura , Polinização/fisiologia , Animais , Malvaceae/ultraestrutura , Microscopia Eletrônica de Varredura , Propriedades de Superfície
3.
PLoS One ; 11(4): e0154728, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27124278

RESUMO

Most flowers display distinct colour patterns comprising two different areas. The peripheral large-area component of floral colour patterns attracts flower visitors from some distance and the central small-area component guides flower visitors towards landing sites. Whereas the peripheral colour is largely variable among species, the central colour, produced mostly by anthers and pollen or pollen mimicking floral guides, is predominantly yellow and UV-absorbing. This holds also for yellow flowers that regularly display a UV bull's eye pattern. Here we show that yellow-flowering Crocus species are a noticeable exception, since yellow-flowering Crocus species-being entirely UV-absorbing-exhibit low colour contrast between yellow reproductive organs and yellow tepals. The elongated yellow or orange-yellow style of Crocus flowers is a stamen-mimicking structure promoting cross-pollination by facilitating flower visitors' contact with the apical stigma before the flower visitors are touching the anthers. Since Crocus species possess either yellow, violet or white tepals, the colour contrast between the stamen-mimicking style and the tepals varies among species. In this study comprising 106 Crocus species, it was tested whether the style length of Crocus flowers is dependent on the corolla colour. The results show that members of the genus Crocus with yellow tepals have evolved independently up to twelve times in the genus Crocus and that yellow-flowering Crocus species possess shorter styles as compared to violet- and white-flowering ones. The manipulation of flower visitors by anther-mimicking elongated styles in Crocus flowers is discussed.


Assuntos
Crocus/fisiologia , Flores/fisiologia , Pigmentação/genética , Polinização/fisiologia , Animais , Abelhas/fisiologia , Crocus/genética , Flores/genética , Pólen/fisiologia
4.
PLoS One ; 9(3): e91900, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637406

RESUMO

Almost all bees collect nectar and pollen from flowers. Female bees collect pollen to provision their nest cells, whereas they use nectar for individual energy supply and nest cell provisioning. Bees fine-tune nectar foraging to the amount and to the concentration of nectar, but the individual bees' response to variability of amount and concentration of pollen reward has not yet been studied thoroughly in laboratory settings. We developed an experimental set-up in which bumblebees simultaneously collected sugar solution and pollen from artificial flowers; natural pollen was mixed with cellulose powder or glass powder as a pollen surrogate. Here we show that bumblebee (Bombus terrestris) workers do not specialise in nectar or pollen collection, but regularly collect both rewards on the same day. When offered a fixed pollen reward and varied amounts and concentrations of sugar solution, the bumblebees fine-tuned sugar solution foraging dependent on both the volume and concentration, with strong preferences for the highest concentration and the greatest volume. In the reciprocal tests, when offered a fixed sugar reward and varied amounts and concentrations of pollen mixed with a nutrient-free pollen surrogate, the bumblebees follow more an all-or-none rule for pollen, accepting all amounts and concentrations except pure surrogate. It is discussed how the bumblebees' ability to sense sugar, and their apparent inability to sense the pollen protein content, shaped their foraging behaviour. It is argued that the rarity of nectar mimicry and the frequency of pollen mimicry in natural flowers might be interpreted in the context of divergent abilities of nectar and pollen recognition in bees.


Assuntos
Abelhas/fisiologia , Néctar de Plantas , Pólen , Animais , Comportamento Alimentar , Feminino , Masculino , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA