Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 10: 1190387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213243

RESUMO

Soft pneumatic artificial muscles are increasingly popular in the field of soft robotics due to their light-weight, complex motions, and safe interfacing with humans. In this paper, we present a Vacuum-Powered Artificial Muscle (VPAM) with an adjustable operating length that offers adaptability throughout its use, particularly in settings with variable workspaces. To achieve the adjustable operating length, we designed the VPAM with a modular structure consisting of cells that can be clipped in a collapsed state and unclipped as desired. We then conducted a case study in infant physical therapy to demonstrate the capabilities of our actuator. We developed a dynamic model of the device and a model-informed open-loop control system, and validated their accuracy in a simulated patient setup. Our results showed that the VPAM maintains its performance as it grows. This is crucial in applications such as infant physical therapy where the device must adapt to the growth of the patient during a 6-month treatment regime without actuator replacement. The ability to adjust the length of the VPAM on demand offers a significant advantage over traditional fixed-length actuators, making it a promising solution for soft robotics. This actuator has potential for various applications that can leverage on demand expansion and shrinking, including exoskeletons, wearable devices, medical robots, and exploration robots.

2.
Micromachines (Basel) ; 12(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34442593

RESUMO

The majority of soft pneumatic actuators for rehabilitation exercises have been designed for adult users. Specifically, there is a paucity of soft rehabilitative devices designed for infants with upper and lower limb motor disabilities. We present a low-profile vacuum-powered artificial muscle (LP-VPAM) with dimensions suitable for infants. The actuator produced a maximum force of 26 N at vacuum pressures of -40 kPa. When implemented in an experimental model of an infant leg in an antagonistic-agonist configuration to measure resultant knee flexion, the actuator generated knee flexion angles of 43° and 61° in the prone and side-lying position, respectively.

3.
Front Robot AI ; 8: 606938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763454

RESUMO

In this paper, we present a generalized modeling tool for predicting the output force profile of vacuum-powered soft actuators using a simplified geometrical approach and the principle of virtual work. Previous work has derived analytical formulas to model the force-contraction profile of specific actuators. To enhance the versatility and the efficiency of the modelling process we propose a generalized numerical algorithm based purely on geometrical inputs, which can be tailored to the desired actuator, to estimate its force-contraction profile quickly and for any combination of varying geometrical parameters. We identify a class of linearly contracting vacuum actuators that consists of a polymeric skin guided by a rigid skeleton and apply our model to two such actuators-vacuum bellows and Fluid-driven Origami-inspired Artificial Muscles-to demonstrate the versatility of our model. We perform experiments to validate that our model can predict the force profile of the actuators using its geometric principles, modularly combined with design-specific external adjustment factors. Our framework can be used as a versatile design tool that allows users to perform parametric studies and rapidly and efficiently tune actuator dimensions to produce a force-contraction profile to meet their needs, and as a pre-screening tool to obviate the need for multiple rounds of time-intensive actuator fabrication and testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...