Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366271

RESUMO

The polymerase chain reaction is an important technique in biological research. However, it is time consuming and has a number of disadvantages. Therefore, real-time PCR technology that can be used in real-time monitoring has emerged, and many studies are being conducted regarding its use. Real-time PCR requires many optical components and imaging devices such as expensive, high-performance cameras. Therefore, its cost and assembly process are limitations to its use. Currently, due to the development of smart camera devices, small, inexpensive cameras and various lenses are being developed. In this paper, we present a Compact Camera Fluorescence Detector for use in parallel-light lens-based real-time PCR devices. The proposed system has a simple optical structure, the system cost can be reduced, and the size can be miniaturized. This system only incorporates Fresnel lenses without additional optics in order for the same field of view to be achieved for 25 tubes. In the center of the Fresnel lens, one LED and a complementary metal-oxide semiconductor camera were placed in directions that were as similar as possible. In addition, to achieve the accurate analysis of the results, image processing was used to correct them. As a result of an experiment using a reference fluorescent substance and double-distilled water, it was confirmed that stable fluorescence detection was possible.


Assuntos
Lentes , Dispositivos Ópticos , Reação em Cadeia da Polimerase em Tempo Real , Óptica e Fotônica , Processamento de Imagem Assistida por Computador
2.
Sensors (Basel) ; 21(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770252

RESUMO

The lack of portability and high cost of multiplex real-time PCR systems limits the device to be used in POC. To overcome this issue, this paper proposes a compact and cost-effective fluorescence detection system that can be integrated to a multiplex real-time PCR equipment. An open platform camera with embedded lens was used instead of photodiodes or an industrial camera. A compact filter wheel using a sliding tape is integrated, and the excitation LEDs are fixed at a 45° angle near the PCR chip, eliminating the need of additional filter wheels. The results show precise positioning of the filter wheel with an error less than 20 µm. Fluorescence detection results using a reference dye and standard DNA amplification showed comparable performance to that of the photodiode system.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Análise Custo-Benefício , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
3.
Sensors (Basel) ; 21(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770319

RESUMO

The polymerase chain reaction is an important technique in biological research because it tests for diseases with a small amount of DNA. However, this process is time consuming and can lead to sample contamination. Recently, real-time PCR techniques have emerged which make it possible to monitor the amplification process for each cycle in real time. Existing camera-based systems that measure fluorescence after DNA amplification simultaneously process fluorescence excitation and emission for dozens of tubes. Therefore, there is a limit to the size, cost, and assembly of the optical element. In recent years, imaging devices for high-performance, open platforms have benefitted from significant innovations. In this paper, we propose a fluorescence detector for real-time PCR devices using an open platform camera. This system can reduce the cost, and can be miniaturized. To simplify the optical system, four low-cost, compact cameras were used. In addition, the field of view of the entire tube was minimized by dividing it into quadrants. An effective image processing method was used to compensate for the reduction in the signal-to-noise ratio. Using a reference fluorescence material, it was confirmed that the proposed system enables stable fluorescence detection according to the amount of DNA.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...