Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Magn Reson ; 26(2): 101049, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878969

RESUMO

BACKGROUND: The Plaque At RISK (PARISK) study demonstrated that patients with a carotid plaque with intraplaque hemorrhage (IPH) have an increased risk of recurrent ipsilateral ischemic cerebrovascular events. It was previously reported that symptomatic carotid plaques with IPH showed higher IPH signal intensity ratios (SIR) and larger IPH volumes than asymptomatic plaques. We explored whether IPH SIR and IPH volume are associated with future ipsilateral ischemic cerebrovascular events beyond the presence of IPH. METHODS: Transient ischemic attack and ischemic stroke patients with mild-to-moderate carotid stenosis and an ipsilateral IPH-positive carotid plaque (n = 89) from the PARISK study were included. The clinical endpoint was a new ipsilateral ischemic cerebrovascular event during 5 years of follow-up, while the imaging-based endpoint was a new ipsilateral brain infarct on brain magnetic resonance imaging (MRI) after 2 years (n = 69). Trained observers delineated IPH, a hyperintense region compared to surrounding muscle tissue on hyper T1-weighted magnetic resonance images. The IPH SIR was the maximal signal intensity in the IPH region divided by the mean signal intensity of adjacent muscle tissue. The associations between IPH SIR or volume and the clinical and imaging-based endpoint were investigated using Cox proportional hazard models and logistic regression, respectively. RESULTS: During 5.1 (interquartile range: 3.1-5.6) years of follow-up, 21 ipsilateral cerebrovascular ischemic events were identified. Twelve new ipsilateral brain infarcts were identified on the 2-year neuro MRI. There was no association for IPH SIR or IPH volume with the clinical endpoint (hazard ratio (HR): 0.89 [95% confidence interval: 0.67-1.10] and HR: 0.91 [0.69-1.19] per 100-µL increase, respectively) nor with the imaging-based endpoint (odds ratio (OR): 1.04 [0.75-1.45] and OR: 1.21 [0.87-1.68] per 100-µL increase, respectively). CONCLUSION: IPH SIR and IPH volume were not associated with future ipsilateral ischemic cerebrovascular events. Therefore, quantitative assessment of IPH of SIR and volume does not seem to provide additional value beyond the presence of IPH for stroke risk assessment. TRIAL REGISTRATION: The PARISK study was registered on ClinicalTrials.gov with ID NCT01208025 on September 21, 2010 (https://clinicaltrials.gov/study/NCT01208025).

2.
EJNMMI Phys ; 11(1): 36, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581561

RESUMO

PURPOSE: A 2D image navigator (iNAV) based 3D whole-heart sequence has been used to perform MRI and PET non-rigid respiratory motion correction for hybrid PET/MRI. However, only the PET data acquired during the acquisition of the 3D whole-heart MRI is corrected for respiratory motion. This study introduces and evaluates an MRI-based respiratory motion correction method of the complete PET data. METHODS: Twelve oncology patients scheduled for an additional cardiac 18F-Fluorodeoxyglucose (18F-FDG) PET/MRI and 15 patients with coronary artery disease (CAD) scheduled for cardiac 18F-Choline (18F-FCH) PET/MRI were included. A 2D iNAV recorded the respiratory motion of the myocardium during the 3D whole-heart coronary MR angiography (CMRA) acquisition (~ 10 min). A respiratory belt was used to record the respiratory motion throughout the entire PET/MRI examination (~ 30-90 min). The simultaneously acquired iNAV and respiratory belt signal were used to divide the acquired PET data into 4 bins. The binning was then extended for the complete respiratory belt signal. Data acquired at each bin was reconstructed and combined using iNAV-based motion fields to create a respiratory motion-corrected PET image. Motion-corrected (MC) and non-motion-corrected (NMC) datasets were compared. Gating was also performed to correct cardiac motion. The SUVmax and TBRmax values were calculated for the myocardial wall or a vulnerable coronary plaque for the 18F-FDG and 18F-FCH datasets, respectively. RESULTS: A pair-wise comparison showed that the SUVmax and TBRmax values of the motion corrected (MC) datasets were significantly higher than those for the non-motion-corrected (NMC) datasets (8.2 ± 1.0 vs 7.5 ± 1.0, p < 0.01 and 1.9 ± 0.2 vs 1.2 ± 0.2, p < 0.01, respectively). In addition, the SUVmax and TBRmax of the motion corrected and gated (MC_G) reconstructions were also higher than that of the non-motion-corrected but gated (NMC_G) datasets, although for the TBRmax this difference was not statistically significant (9.6 ± 1.3 vs 9.1 ± 1.2, p = 0.02 and 2.6 ± 0.3 vs 2.4 ± 0.3, p = 0.16, respectively). The respiratory motion-correction did not lead to a change in the signal to noise ratio. CONCLUSION: The proposed respiratory motion correction method for hybrid PET/MRI improved the image quality of cardiovascular PET scans by increased SUVmax and TBRmax values while maintaining the signal-to-noise ratio. Trial registration METC162043 registered 01/03/2017.

3.
NMR Biomed ; 37(9): e5164, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38664924

RESUMO

Ultrasound speckle tracking is frequently used to quantify myocardial strain, and magnetic resonance imaging (MRI) feature tracking is rapidly gaining interest. Our aim is to validate cardiac MRI feature tracking by comparing it with the gold standard method (i.e., MRI tagging) in healthy subjects and patients. Furthermore, we aim to perform an indirect validation by comparing ultrasound speckle tracking with MRI feature tracking. Forty-two subjects (17 formerly preeclamptic women, three healthy women, and 22 left bundle branch block patients of both sexes) received 3-T cardiac MRI and echocardiography. Cine and tagged MRI, and B-mode ultrasound images, were acquired. Intrapatient global and segmental left ventricular circumferential (MRI tagging vs. MRI feature tracking) and longitudinal (MRI feature tracking vs. ultrasound speckle tracking) peak strain and time to peak strain were compared between the three techniques. Intraclass correlation coefficient (ICC) (< 0.50 = poor, 0.50-0.75 = moderate, > 0.75-0.90 = good, > 0.90 = excellent) and Bland-Altman analysis were used to assess correlation and bias; p less than 0.05 indicates a significant ICC or bias. Global peak strain parameters showed moderate-to-good correlations between methods (ICC = 0.71-0.83, p < 0.01) with no significant biases. Global time to peak strain parameters showed moderate-to-good correlations (ICC = 0.56-0.82, p < 0.01) with no significant biases. Segmental peak strains showed significant biases in all parameters and moderate-to-good correlation (ICC = 0.62-0.77, p < 0.01), except for lateral longitudinal peak strain (ICC = 0.23, p = 0.22). Segmental time to peak strain parameters showed moderate-to-good correlation (ICC = 0.58-0.74, p < 0.01) with no significant biases. MRI feature tracking is a valid method to examine myocardial strain, but there is bias in absolute segmental strain values between imaging techniques. MRI feature tracking shows adequate comparability with ultrasound speckle tracking.


Assuntos
Ventrículos do Coração , Imageamento por Ressonância Magnética , Humanos , Feminino , Adulto , Masculino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Ecocardiografia , Estresse Mecânico
4.
BMJ Open ; 14(3): e077534, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38443087

RESUMO

INTRODUCTION: Pre-eclampsia is a hypertensive disorder affecting up to 8% of pregnancies. After pre-eclampsia, women are at increased risk of cognitive problems, and cerebrovascular and cardiovascular disorders. These sequelae could result from microvascular dysfunction persisting after pre-eclampsia. This study will explore differences in cerebral and myocardial microvascular function between women after pre-eclampsia and women after normotensive gestation. We hypothesise that pre-eclampsia alters cerebral and myocardial microvascular functions, which in turn are related to diminished cognitive and cardiac performance. METHODS AND ANALYSIS: The cross-sectional 'DEcreased Cognitive functiON, NEurovascular CorrelaTes and myocardial changes in women with a history of pre-eclampsia' (DECONNECT) pilot study includes women after pre-eclampsia and controls after normotensive pregnancy between 6 months and 20 years after gestation. We recruit women from the Queen of Hearts study, a study investigating subclinical heart failure after pre-eclampsia. Neuropsychological tests are employed to assess different cognitive domains, including attention, processing speed, and cognitive control. Cerebral images are recorded using a 7 Tesla MRI to assess blood-brain barrier integrity, perfusion, blood flow, functional and structural networks, and anatomical dimensions. Cardiac images are recorded using a 3 Tesla MRI to assess cardiac perfusion, strain, dimensions, mass, and degree of fibrosis. We assess the effect of a history of pre-eclampsia using multivariable regression analyses. ETHICS AND DISSEMINATION: This study is approved by the Ethics Committee of Maastricht University Medical Centre (METC azM/UM, NL47252.068.14). Knowledge dissemination will include scientific publications, presentations at conferences and public forums, and social media. TRIAL REGISTRATION NUMBER: NCT02347540.


Assuntos
Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Cognição , Estudos Transversais , Miocárdio , Projetos Piloto
5.
Neurology ; 102(1): e207795, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165371

RESUMO

BACKGROUND AND OBJECTIVES: Visible perivascular spaces are an MRI marker of cerebral small vessel disease and might predict future stroke. However, results from existing studies vary. We aimed to clarify this through a large collaborative multicenter analysis. METHODS: We pooled individual patient data from a consortium of prospective cohort studies. Participants had recent ischemic stroke or transient ischemic attack (TIA), underwent baseline MRI, and were followed up for ischemic stroke and symptomatic intracranial hemorrhage (ICH). Perivascular spaces in the basal ganglia (BGPVS) and perivascular spaces in the centrum semiovale (CSOPVS) were rated locally using a validated visual scale. We investigated clinical and radiologic associations cross-sectionally using multinomial logistic regression and prospective associations with ischemic stroke and ICH using Cox regression. RESULTS: We included 7,778 participants (mean age 70.6 years; 42.7% female) from 16 studies, followed up for a median of 1.44 years. Eighty ICH and 424 ischemic strokes occurred. BGPVS were associated with increasing age, hypertension, previous ischemic stroke, previous ICH, lacunes, cerebral microbleeds, and white matter hyperintensities. CSOPVS showed consistently weaker associations. Prospectively, after adjusting for potential confounders including cerebral microbleeds, increasing BGPVS burden was independently associated with future ischemic stroke (versus 0-10 BGPVS, 11-20 BGPVS: HR 1.19, 95% CI 0.93-1.53; 21+ BGPVS: HR 1.50, 95% CI 1.10-2.06; p = 0.040). Higher BGPVS burden was associated with increased ICH risk in univariable analysis, but not in adjusted analyses. CSOPVS were not significantly associated with either outcome. DISCUSSION: In patients with ischemic stroke or TIA, increasing BGPVS burden is associated with more severe cerebral small vessel disease and higher ischemic stroke risk. Neither BGPVS nor CSOPVS were independently associated with future ICH.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Ataque Isquêmico Transitório , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Idoso , Masculino , Prognóstico , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/diagnóstico por imagem , Estudos Prospectivos , Hemorragias Intracranianas , Acidente Vascular Cerebral/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Hemorragia Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA