Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631997

RESUMO

The black soldier fly (Hermetia illucens, BSF) has emerged as an industrial insect of high promise because of its ability to convert organic waste into nutritious feedstock, making it an environmentally sustainable alternative protein source. As global interest rises, rearing efforts have also been upscaled, which is highly conducive to pathogen transmission. Viral epidemics have stifled mass-rearing efforts of other insects of economic importance, such as crickets, silkworms, and honeybees, but little is known about the viruses that associate with BSF. Although BSFs are thought to be unusually resistant to pathogens because of their expansive antimicrobial gene repertoire, surveillance techniques could be useful in identifying emerging pathogens and common BSF microbes. In this study, we used high-throughput sequencing data to survey BSF larvae and frass samples, and we identified two novel bunyavirus-like sequences. Our phylogenetic analysis grouped one in the family Nairoviridae and the other with two unclassified bunyaviruses. We describe these putative novel viruses as BSF Nairovirus-like 1 and BSF uncharacterized bunyavirus-like 1. We identified candidate segments for the full BSF Nairovirus-like 1 genome using a technique based on transcript co-occurrence and only a partial genome for BSF uncharacterized bunyavirus-like 1. These results emphasize the value of routine BSF colony surveillance and add to the number of viruses associated with BSF.


Assuntos
Bunyaviridae , Dípteros , Nairovirus , Orthobunyavirus , Animais , Abelhas , Filogenia , Biologia Computacional
2.
Nat Cell Biol ; 24(10): 1475-1486, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36202972

RESUMO

Current dogma asserts that the foetal liver (FL) is an expansion niche for recently specified haematopoietic stem cells (HSCs) during ontogeny. Indeed, between embryonic day of development (E)12.5 and E14.5, the number of transplantable HSCs in the murine FL expands from 50 to about 1,000. Here we used a non-invasive, multi-colour lineage tracing strategy to interrogate the embryonic expansion of murine haematopoietic progenitors destined to contribute to the adult HSC pool. Our data show that this pool of fated progenitors expands only two-fold during FL ontogeny. Although Histone2B-GFP retention in vivo experiments confirmed substantial proliferation of phenotypic FL-HSC between E12.5 and E14.5, paired-daughter cell assays revealed that many mid-gestation phenotypic FL-HSCs are biased to differentiate, rather than self-renew, relative to phenotypic neonatal and adult bone marrow HSCs. In total, these data support a model in which the FL-HSC pool fated to contribute to adult blood expands only modestly during ontogeny.


Assuntos
Células-Tronco Hematopoéticas , Fígado , Camundongos , Animais
3.
Nat Commun ; 13(1): 5403, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109585

RESUMO

While adult bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) and their extrinsic regulation is well studied, little is known about the composition, function, and extrinsic regulation of the first HSPCs to enter the BM during development. Here, we functionally interrogate murine BM HSPCs from E15.5 through P0. Our work reveals that fetal BM HSPCs are present by E15.5, but distinct from the HSPC pool seen in fetal liver, both phenotypically and functionally, until near birth. We also generate a transcriptional atlas of perinatal BM HSPCs and the BM niche in mice across ontogeny, revealing that fetal BM lacks HSPCs with robust intrinsic stem cell programs, as well as niche cells supportive of HSPCs. In contrast, stem cell programs are preserved in neonatal BM HSPCs, which reside in a niche expressing HSC supportive factors distinct from those seen in adults. Collectively, our results provide important insights into the factors shaping hematopoiesis during this understudied window of hematopoietic development.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Feminino , Feto , Hematopoese , Camundongos , Parto , Gravidez
4.
Front Microbiol ; 11: 587979, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324369

RESUMO

Historically, research examining the use of microbes as a means to optimize black soldier fly (BSF) growth has explored few taxa. Furthermore, previous research has been done at the benchtop scale, and extrapolating these numbers to industrial scale is questionable. The objectives of this study were to explore the impact of microbes as supplements in larval diets on growth and production of the BSF. Three experiments were conducted to measure the impact of the following on BSF life-history traits on (1) Arthrobacter AK19 supplementation at benchtop scale, (2) Bifidobacterium breve supplementation at benchtop scale, and (3) Arthrobacter AK19 and Rhodococcus rhodochrous 21198 as separate supplements at an industrial scale. Maximum weight, time to maximum weight, growth rate, conversion level of diet to insect biomass, and associated microbial community structure and function were assessed for treatments in comparison to a control. Supplementation with Arthrobacter AK19 at benchtop scale enhanced growth rate by double at select time points and waste conversion by approximately 25-30% with no impact on the microbial community. Predicted gene expression in microbes from Arthrobacter AK19 treatment was enriched for functions involved in protein digestion and absorption. Bifidobacterium breve, on the other hand, had the inverse effect with larvae being 50% less in final weight, experiencing 20% less conversion, and experienced suppression of microbial community diversity. For those tested at the industrial scale, Arthrobacter AK19 and R. rhodochrous 21198 did not impact larval growth differently as both resulted in approximately 22% or more greater growth than those in the control. Waste conversion with the bacteria was similar to that recorded for the control. Diets treated with the supplemental bacteria showed increased percent difference in predicted genes compared to control samples for functions involved in nutritional assimilation (e.g., protein digestion and absorption, energy metabolism, lipid metabolism). Through these studies, it was demonstrated that benchtop and industrial scale results can differ. Furthermore, select microbes can be used at an industrial scale for optimizing BSF larval production and waste conversion, while others cannot. Thus, targeted microbes for such practices should be evaluated prior to implementation.

5.
BMC Microbiol ; 20(1): 309, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33050884

RESUMO

BACKGROUND: Each death event can be characterized by its associated microbes - a living community of bacteria composed of carcass, soil, and insect-introduced bacterial species - a necrobiome. With the possibility for close succession of these death events, it may be beneficial to characterize how the magnitude of an initial death event may impact the decomposition and necrobiomes of subsequent death events in close proximity. In this paper we hope to characterize the microbial communities associated with a proximate subsequent death event, and distinguish any changes within those communities based on the magnitude of an initial death event and the biomass of preexisting carcass (es) undergoing decomposition. For this experiment, 6 feral swine carcasses in containers were placed in the vicinity of preexisting and ongoing carcass decomposition at sites of three different scales of decomposing carcass biomass. Swab samples were collected from the skin and eye sockets of the container pigs and subjected to 16 s rRNA sequencing and OTU assignment. RESULTS: PERMANOVA analysis of the bacterial taxa showed that there was no significant difference in the bacterial communities based on initial mortality event biomass size, but we did see a change in the bacterial communities over time, and slight differences between the skin and ocular cavity communities. Even without soil input, necrobiome communities can change rapidly. Further characterization of the bacterial necrobiome included utilization of the Random Forest algorithm to identify the most important predictors for time of decomposition. Sample sets were also scanned for notable human and swine-associated pathogens. CONCLUSIONS: The applications from this study are many, ranging from establishing the environmental impacts of mass mortality events to understanding the importance of scavenger, and scavenger microbial community input on decomposition.


Assuntos
Bactérias/isolamento & purificação , Mudanças Depois da Morte , Microbiologia do Solo , Animais , Bactérias/genética , Biomassa , Insetos/microbiologia , Modelos Animais , RNA Ribossômico 16S , Análise de Sequência de RNA , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...