Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 21(8): e2100088, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34117838

RESUMO

The aim of the current study is to assess the biological performance of self-healing hydrogels based on calcium phosphate (CaP) nanoparticles and bisphosphonate (BP) conjugated hyaluronan (HA) in a critical size segmental femoral bone defect model in rats. Additionally, these hydrogels are loaded with bone morphogenetic protein 2 (BMP-2) and their performance is compared in healthy and osteoporotic bone conditions. Treatment groups comprise internal plate fixation and placement of a PTFE tube containing hydrogel (HABP -CaP) or hydrogel loaded with BMP-2 in two dosages (HABP -CaP-lowBMP2 or HABP -CaP-highBMP2). Twelve weeks after bone defect surgery, bone formation is analyzed by X-ray examination, micro-CT analysis, and histomorphometry. The data show that critical size, segmental femoral bone defects cannot be healed with HABP -CaP gel alone. Loading of the HABP -CaP gel with low dose BMP-2 significantly improve bone formation and resulted in defect bridging in 100% of the defects. Alternatively, high dose BMP-2 loading of the HABP -CaP gel does not improve bone formation within the defect area, but leads to excessive bone formation outside the defect area. Bone defect healing is not affected by osteoporotic bone conditions.


Assuntos
Doenças Ósseas , Proteína Morfogenética Óssea 2 , Animais , Doenças Ósseas/tratamento farmacológico , Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea , Fêmur/diagnóstico por imagem , Hidrogéis/farmacologia , Nanogéis , Ratos
2.
Arch Osteoporos ; 14(1): 113, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31768768

RESUMO

Extracorporeal shockwave therapy showed a pronounced effect on bone mass in previous animal studies. We showed in this pilot study that a single treatment with unfocused shockwave therapy in unselected patients does not show side effects. Although our study did not show any effect of shockwave on BMD, the limited sample size does not definitively exclude this and a study with 174 subjects per group would be needed to show an effect size of 0.3 with a power of 80%. PURPOSE: Unfocused extracorporeal shockwave therapy might stimulate bone formation to reduce the fracture risk. In this study, we assessed the safety of unfocused extracorporeal shockwave therapy and its effects on bone mass. METHODS: A clinical pilot study with twelve female patients free of bone disease undergoing elective surgery of the lower extremity or elective spinal surgery under general anesthesia received 3.000 electrohydraulic-generated unfocused extracorporeal shockwaves (energy flux density 0.3 mJ/mm2) to one distal forearm. The contralateral forearm served as a control. We examined the effect on bone mass with the use of repeated dual energy X-ray absorptiometry measurements and we measured patient discomfort around the therapy. RESULTS: No difference in bone mineral content and density was measured 6 and 12 weeks after therapy. shockwave therapy occasionally caused transient erythema or mild hematoma, but no discomfort in daily life or (late) adverse events. CONCLUSIONS: Unfocused extracorporeal shockwave therapy is a safe treatment, but no increase in bone mass on the forearm was found at 0.3 mJ/mm2 energy flux density. In this study, we were not able to demonstrate that a single treatment with unfocused shockwave therapy in unselected patients had any effect in terms of bone mineral density (BMD) or bone mineral content (BMC). A power analysis indicated that 174 patients per group are required to show an effect size of 0.3 with a power of 80%.


Assuntos
Densidade Óssea/fisiologia , Tratamento por Ondas de Choque Extracorpóreas/efeitos adversos , Antebraço/fisiologia , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Tratamento por Ondas de Choque Extracorpóreas/métodos , Feminino , Antebraço/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Fraturas por Osteoporose/prevenção & controle , Dor/etiologia , Projetos Piloto , Pós-Menopausa/fisiologia , Radiografia , Método Simples-Cego
3.
PLoS One ; 13(7): e0200020, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969479

RESUMO

Bone substitutes are frequently used in clinical practice but often exhibit limited osteoinductivity. We hypothesized that unfocused shockwaves enhance the osteoinductivity of bone substitutes and improve osteointegration and angiogenesis. Three different bone substitutes, namely porous tricalcium phosphate, porous hydroxyapatite and porous titanium alloy, were implanted in a critical size (i.e. 6-mm) femoral defect in rats. The femora were treated twice with 1500 shockwaves at 2 and 4 weeks after surgery and compared with non-treated controls. The net volume of de novo bone in the defect was measured by microCT-scanning during 11-weeks follow-up. Bone ingrowth and angiogenesis in the bone substitutes was examined at 5 and 11 weeks using histology. It was shown that hydroxyapatite and titanium both had an increase of bone ingrowth with more bone in the shockwave group compared to the control group, whereas resorption was seen in tricalcium phosphate bone substitutes over time and this was insensitive to shockwave treatment. In conclusion, hydroxyapatite and titanium bone substitutes favour from shockwave treatment, whereas tricalcium phosphate does not. This study shows that osteoinduction and osteointegration of bone substitutes can be influenced with unfocused shockwave therapy, but among other factors depend on the type of bone substitute, likely reflecting its mechanical and biological properties.


Assuntos
Substitutos Ósseos , Osso Cortical/fisiologia , Osseointegração , Som , Animais , Osso Cortical/citologia , Osso Cortical/diagnóstico por imagem , Masculino , Ratos , Ratos Wistar , Microtomografia por Raio-X
4.
J Orthop Res ; 36(1): 76-84, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28543599

RESUMO

Screw fixation in osteoporotic patients is becoming an increasing problem in orthopaedic surgery as deterioration of cortical and cancellous bone hamper biomechanical stability and screw fixation. This might result in delayed weight-bearing or failure of instrumentation. We hypothesized that local peri-operative shock wave treatment can optimize osseointegration and subsequent screw fixation. In eight female Wistar rats, two cancellous and two cortical bone screws were implanted in both femora and tibiae. Immediately after implantation, 3.000 unfocused extracorporeal shock waves (energy flux density 0.3 mJ/mm2 ) were applied to one side. The other side served as non-treated internal control. Evaluation of osseointegration was performed after 4 weeks with the use of microCT scanning, histology with fluorochrome labeling, and pull-out tests of the screws. Four weeks after extracorporeal shock wave treatment, treated legs exhibited increased bone formation and screw fixation around cortical screws as compared to the control legs. This was corroborated by an increased pull-out of the shock wave treated cortical screws. The cancellous bone screws appeared not to be sensitive for shock wave treatment. Formation of neocortices after shock wave therapy was observed in three of eight animals. Furthermore, de novo bone formation in the bone marrow was observed in some animals. The current study showed bone formation and improved screw fixation as a result of shock wave therapy. New bone was also formed at locations remote from the screws, hence, not contributing to screw fixation. Further, research is warranted to make shock wave therapy tailor-made for fracture fixation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:76-84, 2018.


Assuntos
Parafusos Ósseos , Tratamento por Ondas de Choque Extracorpóreas , Fixação Interna de Fraturas/métodos , Animais , Fenômenos Biomecânicos , Feminino , Ratos , Ratos Wistar , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...