Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(23): 20949-20958, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332802

RESUMO

The aim of this work is to synthesize and characterize a nanostructured material with improved parameters suitable as a chemiresistive gas sensor sensitive to propylene glycol vapor (PGV). Thus, we demonstrate a simple and cost-effective technology to grow vertically aligned carbon nanotubes (CNTs) and fabricate a PGV sensor based on Fe2O3:ZnO/CNT material using the radio frequency magnetron sputtering method. The presence of vertically aligned carbon nanotubes on the Si(100) substrate was confirmed by scanning electron microscopy and Fourier transform infrared (FTIR), Raman, and energy-dispersive X-ray spectroscopies. The uniform distribution of elements in both CNTs and Fe2O3:ZnO materials was revealed by e-mapped images. The hexagonal shape of the ZnO material in the Fe2O3:ZnO structure and the interplanar spacing in the crystals were clearly visible by transmission electron microscopy images. The gas-sensing behavior of the Fe2O3:ZnO/CNT sensor toward PGV was investigated in the temperature range of 25-300 °C with and without ultraviolet (UV) irradiation. The sensor showed clear and repeatable response/recovery characteristics in the PGV range of 1.5-140 ppm, sufficient linearity of response/concentration dependence, and high selectivity both at 200 and 250 °C without UV radiation. This is a basis for concluding that the synthesized Fe2O3:ZnO/CNT structure is the best candidate for use in PGV sensors, which will allow its further successful application in real-life sensor systems.

2.
Carbohydr Polym ; 309: 120662, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906374

RESUMO

Combining highly conducting one-dimensional nanostructures of polypyrrole with cellulose nanofibers (CNF) into flexible films with tailored electrical conductivity and mechanical properties presents a promising route towards the development of eco-friendly electromagnetic interference shielding devices. Herein, conducting films with a thickness of 140 µm were synthesized from polypyrrole nanotubes (PPy-NT) and CNF using two approaches, i.e., a new one-pot synthesis consisting of in situ polymerization of pyrrole in the presence of structure guiding agent and CNF, and a two-step synthesis, in which CNF and PPy-NT were physically blended. Films based on one-pot synthesis (PPy-NT/CNFin) exhibited higher conductivity than those processed by physical blending, which was further enhanced up to 14.51 S cm-1 after redoping using HCl post-treatment. PPy-NT/CNFin containing the lowest PPy-NT loading (40 wt%), thus the lowest conductivity (5.1 S cm-1), displayed the highest shielding effectiveness of -23.6 dB (>90 % attenuation), thanks to the good balance between its mechanical properties and electrical conductivity.

3.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616029

RESUMO

In this report, a Fe2O3:ZnO sputtering target and a nanograins-based sensor were developed for the room temperature (RT) detection of hydrogen peroxide vapor (HPV) using the solid-state reaction method and the radio frequency (RF) magnetron sputtering technique, respectively. The characterization of the synthesized sputtering target and the obtained nanostructured film was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) analyses. The SEM and TEM images of the film revealed its homogeneous granular structure, with a grain size of 10-30 nm and an interplanar spacing of Fe2O3 and ZnO, respectively. EDX spectroscopy presented the real concentrations of Zn in the target material and in the film (21.2 wt.% and 19.4 wt.%, respectively), with a uniform distribution of O, Al, Zn, and Fe elements in the e-mapped images of the Fe2O3:ZnO film. The gas sensing behavior was investigated in the temperature range of 25-250 °C with regards to the 1.5-56 ppm HPV concentrations, with and without ultraviolet (UV) irradiation. The presence of UV light on the Fe2O3:ZnO surface at RT reduced a low detection limit from 3 ppm to 1.5 ppm, which corresponded to a response value of 12, with the sensor's response and recovery times of 91 s and 482 s, respectively. The obtained promising results are attributed to the improved characteristics of the Fe2O3:ZnO composite material, which will enable its use in multifunctional sensor systems and medical diagnostic devices.

4.
ACS Omega ; 6(32): 20895-20901, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423197

RESUMO

Melamine sponges were coated with polypyrrole during the in situ polymerization of pyrrole. The precipitation polymerization was compared with the dispersion mode, that is, with the preparation in the presence of poly(N-vinylpyrrolidone) and nanosilica as colloidal stabilizers. The coating of sponges during the dispersion polymerization leads to the elimination of the undesired polypyrrole precipitate, improved conductivity, and increased specific surface area. The sponges were tested with respect to their conductivity and as pressure-sensitive conducting materials with antibacterial performance.

5.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233379

RESUMO

Polypyrrole one-dimensional nanostructures (nanotubes, nanobelts and nanofibers) were prepared using three various dyes (Methyl Orange, Methylene Blue and Eriochrome Black T). Their high electrical conductivity (from 17.1 to 60.9 S cm-1), good thermal stability (in the range from 25 to 150 °C) and resistivity against ageing (half-time of electrical conductivity around 80 days and better) were used in preparation of lightweight and flexible composites with silicone for electromagnetic interference shielding in the C-band region (5.85-8.2 GHz). The nanostructures' morphology and chemical structure were characterized by scanning electron microscopy, Brunauer-Emmett-Teller specific surface measurement and attenuated total reflection Fourier-transform infrared spectroscopy. DC electrical conductivity was measured using the Van der Pauw method. Complex permittivity and AC electrical conductivity of respective silicone composites were calculated from the measured scattering parameters. The relationships between structure, electrical properties and shielding efficiency were studied. It was found that 2 mm-thick silicone composites of polypyrrole nanotubes and nanobelts shield almost 80% of incident radiation in the C-band at very low loading of conductive filler in the silicone (5% w/w). Resulting lightweight and flexible polypyrrole composites exhibit promising properties for shielding of electromagnetic interference in sensitive biological and electronic systems.


Assuntos
Radiação Eletromagnética , Nanoestruturas/química , Polímeros/química , Pirróis/química , Silicones/química , Compostos Azo/química , Azul de Metileno/química , Microscopia Eletrônica de Varredura , Nanofibras/química , Nanofibras/efeitos da radiação , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Nanotubos/química , Nanotubos/efeitos da radiação , Nanotubos/ultraestrutura , Polímeros/efeitos da radiação , Pirróis/efeitos da radiação , Silicones/efeitos da radiação
6.
Sci Rep ; 7(1): 15068, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118369

RESUMO

Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.

7.
Sensors (Basel) ; 16(11)2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27854279

RESUMO

Polypyrrole (PPy) in globular form and as nanotubes were prepared by the oxidation of pyrrole with iron(III) chloride in the absence and presence of methyl orange, respectively. They were subsequently converted to nitrogen-containing carbons at 650 °C in an inert atmosphere. The course of carbonization was followed by thermogravimetric analysis and the accompanying changes in molecular structure by Fourier Transform Infrared and Raman spectroscopies. Both the original and carbonized materials have been tested in sensing of polar and non-polar organic vapors. The resistivity of sensing element using globular PPy was too high and only nanotubular PPy could be used. The sensitivity of the PPy nanotubes to ethanol vapors was nearly on the same level as that of their carbonized analogs (i.e., ~18% and 24%, respectively). Surprisingly, there was a high sensitivity of PPy nanotubes to the n-heptane vapors (~110%), while that of their carbonized analog remained at ~20%. The recovery process was significantly faster for carbonized PPy nanotubes (in order of seconds) compared with 10 s of seconds for original nanotubes, respectively, due to higher specific surface area after carbonization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...