Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2310771121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709917

RESUMO

Shifts in the hydrogen stable isotopic composition (2H/1H ratio) of lipids relative to water (lipid/water 2H-fractionation) at natural abundances reflect different sources of the central cellular reductant, NADPH, in bacteria. Here, we demonstrate that lipid/water 2H-fractionation (2εfattyacid/water) can also constrain the relative importance of key NADPH pathways in eukaryotes. We used the metabolically flexible yeast Saccharomyces cerevisiae, a microbial model for respiratory and fermentative metabolism in industry and medicine, to investigate 2εfattyacid/water. In chemostats, fatty acids from glycerol-respiring cells were >550‰ 2H-enriched compared to those from cells aerobically fermenting sugars via overflow metabolism, a hallmark feature in cancer. Faster growth decreased 2H/1H ratios, particularly in glycerol-respiring cells by 200‰. Variations in the activities and kinetic isotope effects among NADP+-reducing enzymes indicate cytosolic NADPH supply as the primary control on 2εfattyacid/water. Contributions of cytosolic isocitrate dehydrogenase (cIDH) to NAPDH production drive large 2H-enrichments with substrate metabolism (cIDH is absent during fermentation but contributes up to 20 percent NAPDH during respiration) and slower growth on glycerol (11 percent more NADPH from cIDH). Shifts in NADPH demand associated with cellular lipid abundance explain smaller 2εfattyacid/water variations (<30‰) with growth rate during fermentation. Consistent with these results, tests of murine liver cells had 2H-enriched lipids from slower-growing, healthy respiring cells relative to fast-growing, fermenting hepatocellular carcinoma. Our findings point to the broad potential of lipid 2H/1H ratios as a passive natural tracker of eukaryotic metabolism with applications to distinguish health and disease, complementing studies that rely on complex isotope-tracer addition methods.


Assuntos
Ácidos Graxos , Fermentação , NADP , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , NADP/metabolismo , Aerobiose , Deutério/metabolismo , Humanos , Glicerol/metabolismo , Isocitrato Desidrogenase/metabolismo
2.
Front Microbiol ; 14: 1139633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152731

RESUMO

Nitrogen (N) is an essential element for life. N compounds such as ammonium ( NH 4 + ) may act as electron donors, while nitrate ( NO 3 - ) and nitrite ( NO 2 - ) may serve as electron acceptors to support energy metabolism. However, little is known regarding the availability and forms of N in subsurface ecosystems, particularly in serpentinite-hosted settings where hydrogen (H2) generated through water-rock reactions promotes habitable conditions for microbial life. Here, we analyzed N and oxygen (O) isotope composition to investigate the source, abundance, and cycling of N species within the Samail Ophiolite of Oman. The dominant dissolved N species was dependent on the fluid type, with Mg2+- HCO 3 - type fluids comprised mostly of NO 3 - , and Ca2+-OH- fluids comprised primarily of ammonia (NH3). We infer that fixed N is introduced to the serpentinite aquifer as NO 3 - . High concentrations of NO 3 - (>100 µM) with a relict meteoric oxygen isotopic composition (δ18O ~ 22‰, Δ17O ~ 6‰) were observed in shallow aquifer fluids, indicative of NO 3 - sourced from atmospheric deposition (rainwater NO 3 - : δ18O of 53.7‰, Δ17O of 16.8‰) mixed with NO 3 - produced in situ through nitrification (estimated endmember δ18O and Δ17O of ~0‰). Conversely, highly reacted hyperalkaline fluids had high concentrations of NH3 (>100 µM) with little NO 3 - detectable. We interpret that NH3 in hyperalkaline fluids is a product of NO 3 - reduction. The proportionality of the O and N isotope fractionation (18ε / 15ε) measured in Samail Ophiolite NO 3 - was close to unity (18ε / 15ε ~ 1), which is consistent with dissimilatory NO 3 - reduction with a membrane-bound reductase (NarG); however, abiotic reduction processes may also be occurring. The presence of genes commonly involved in N reduction processes (narG, napA, nrfA) in the metagenomes of biomass sourced from aquifer fluids supports potential biological involvement in the consumption of NO 3 - . Production of NH 4 + as the end-product of NO 3 - reduction via dissimilatory nitrate reduction to ammonium (DNRA) could retain N in the subsurface and fuel nitrification in the oxygenated near surface. Elevated bioavailable N in all sampled fluids indicates that N is not likely limiting as a nutrient in serpentinites of the Samail Ophiolite.

4.
Geobiology ; 21(1): 102-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150122

RESUMO

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are frequently employed as paleoenvironmental proxies because of the strong empirical correlations between their relative abundances and environmental temperature and pH. Despite the ubiquity of brGDGTs in modern and paleoenvironments, the source organisms of these enigmatic compounds have remained elusive, requiring paleoenvironmental applications to rely solely on observed environmental correlations. Previous laboratory and environmental studies have suggested that the globally abundant bacterial phylum of the Acidobacteria may be an important brGDGT producer in nature. Here, we report on experiments with a cultured Acidobacterium, Solibacter usitatus, that makes a large portion of its cellular membrane (24 ± 9% across all experiments) out of a structurally diverse set of tetraethers including the common brGDGTs Ia, IIa, IIIa, Ib, and IIb. Solibacter usitatus was grown across a range of conditions including temperatures from 15 to 30°C, pH from 5.0 to 6.5, and O2 from 1% to 21%, and demonstrated pronounced shifts in the degree of brGDGT methylation across these growth conditions. The temperature response in culture was in close agreement with trends observed in published environmental datasets, supporting a physiological basis for the empirical relationship between brGDGT methylation number and temperature. However, brGDGT methylation at lower temperatures (15 and 20°C) was modulated by culture pH with higher pH systematically increasing the degree of methylation. In contrast, pH had little effect on brGDGT cyclization, supporting the hypothesis that changes in bacterial community composition may underlie the link between cyclization number and pH observed in environmental samples. Oxygen concentration likewise affected brGDGT methylation highlighting the potential for this environmental parameter to impact paleotemperature reconstruction. Low O2 culture conditions further resulted in the production of uncommon brGDGT isomers that could be indicators of O2 limitation. Finally, the production of brGTGTs (trialkyl tetraethers) in addition to the previously discovered iso-C15-based mono- and diethers in S. usitatus suggests a potential biosynthetic pathway for brGDGTs that uses homologs of the archaeal tetraether synthase (Tes) enzyme for tetraether synthesis from diethers.


Assuntos
Acidobacteria , Glicerol , Glicerol/metabolismo , Temperatura , Archaea/metabolismo , Bactérias , Concentração de Íons de Hidrogênio
5.
ACS Earth Space Chem ; 6(11): 2582-2594, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36425342

RESUMO

The study of isotopic fingerprints in nitrate (δ15N, δ18O, Δ17O) has enabled pivotal insights into the global nitrogen cycle and revealed new knowledge gaps. Measuring populations of isotopic homologs of intact NO3 - ions (isotopologues) shows promise to advance the understanding of nitrogen cycling processes; however, we need new theory and predictions to guide laboratory experiments and field studies. We investigated the hypothesis that the isotopic composition of the residual nitrate pool is controlled by the N-O bond-breaking step in Nar dissimilatory nitrate reductase using molecular models of the enzyme active sites and associated kinetic isotope effects (KIEs). We integrated the molecular model results into reaction path models representing the reduction of nitrate under either closed-system or steady-state conditions. The predicted intrinsic KIE (15ε and 18ε) of the Nar active site matches observed fractionations in both culture and environmental studies. This is what would be expected if the isotopic composition of marine nitrate were controlled by dissimilatory nitrate reduction by Nar. For a closed system, the molecular models predict a pronounced negative 15N-18O clumping anomaly in residual nitrate. This signal could encode information about the amount of nitrate consumed in a closed system and thus constrain initial nitrate concentration and its isotopic composition. Similar clumped isotope anomalies can potentially be used to distinguish whether a system is open or closed to new nitrate addition. These mechanistic predictions can be tested and refined in combination with emerging ESI-Orbitrap measurements.

6.
Anal Chem ; 93(26): 9139-9148, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165950

RESUMO

Widely used isotope ratio mass spectrometers have limited capabilities to measure metabolites, drugs, or small polyatomic ions without the loss of structural isotopic information. A new approach has recently been introduced that uses electrospray ionization Orbitrap to measure multidimensional isotope signatures of intact polar compounds. Using nitrate as a model compound, this study aims to establish performance metrics for comparisons with conventional IRMS at the natural abundance level. We present a framework on how to convert isotopolog intensities to δ values that are commonly used in the isotope geochemistry community. The quantification of seven nitrate isotopologs provides multiple pathways for obtaining the primary N and O δ values including non-mass-dependent O isotope variations, as well as opportunities to explore nonrandom isotopic distributions (i.e., clumping effects) within molecular nitrate. Using automation and the adaptation of measurement principles that are specific to isotope ratio analysis, nitrate δ15NAIR, δ18OVSMOW, and δ17OVSMOW were measured with a long-term precision of 0.4‰ or better for isotopic reference materials and purified nitrate from environmental samples. In addition, we demonstrate promising results for unpurified environmental samples in liquid form. With these new developments, this study connects the two largely disparate mass spectrometry fields of bioanalytical MS and isotope ratio MS, thus providing a route to measure new isotopic signatures in diverse organic and inorganic solutes.


Assuntos
Nitratos , Óxidos de Nitrogênio , Espectrometria de Massas , Isótopos de Nitrogênio , Isótopos de Oxigênio
7.
Environ Sci Technol ; 55(8): 5537-5546, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33687201

RESUMO

Dissimilatory nitrate reduction (DNR) to nitrite is the first step in denitrification, the main process through which bioavailable nitrogen is removed from ecosystems. DNR is catalyzed by both cytosolic (Nar) and periplasmic (Nap) nitrate reductases and fractionates the stable isotopes of nitrogen (14N, 15N) and oxygen (16O, 18O), which is reflected in residual environmental nitrate pools. Data on the relationship between the pattern in oxygen vs nitrogen isotope fractionation (18ε/15ε) suggests that systematic differences exist between marine and terrestrial ecosystems that are not fully understood. We examined the 18ε/15ε of nitrate-reducing microorganisms that encode Nar, Nap, or both enzymes, as well as gene deletion mutants of Nar and Nap to test the hypothesis that enzymatic differences alone could explain the environmental observations. We find that the distribution of 18ε/15ε fractionation ratios of all examined nitrate reductases forms two distinct peaks centered around an 18ε/15ε proportionality of 0.55 (Nap) and 0.91 (Nar), with the notable exception of the Bacillus Nar reductases, which cluster isotopically with the Nap reductases. Our findings may explain differences in 18ε/15ε fractionation between marine and terrestrial systems and challenge current knowledge about Nar 18ε/15ε signatures.


Assuntos
Ecossistema , Oxigênio , Nitrato Redutase , Nitrato Redutases , Nitratos , Isótopos de Nitrogênio
8.
Rapid Commun Mass Spectrom ; 35(4): e8983, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33068049

RESUMO

RATIONALE: The hydrogen isotopic composition of lipids (δ2 Hlipid ) is widely used in food science and as a proxy for past hydrological conditions. Determining the δ2 H values of large, well-preserved triacylglycerides and other microbial lipids, such as glycerol dialkyl glycerol tetraether (GDGT) lipids, is thus of widespread interest but has so far not been possible due to their low volatility which prohibits analysis by traditional gas chromatography/pyrolysis/isotope ratio mass spectrometry (GC/P/IRMS). METHODS: We determined the δ2 H values of large, polar molecules and applied high-temperature gas chromatography (HTGC) methods on a modified GC/P/IRMS system. The system used a high-temperature 7-m GC column, and a glass Y-splitter for low thermal mass. Methods were validated using authentic standards of large, functionalised molecules (triacylglycerides, TGs), purified standards of GDGTs. The results were compared with δ2 H values determined by high-temperature elemental analyser/pyrolysis/isotope ratio mass spectrometry (HTEA/P/IRMS), and subsequently applied to the analysis of GDGTs in a sample from a methane seep and a Welsh peat. RESULTS: The δ2 H values of TGs agreed within error between HTGC/P/IRMS and HTEA/IRMS, with HTGC/P/IRMS showing larger errors. Archaeal lipid GDGTs with up to three cyclisations could be analysed: the δ2 H values were not significantly different between methods with standard deviations of 5 to 6 ‰. When environmental samples were analysed, the δ2 H values of isoGDGTs were 50 ‰ more negative than those of terrestrial brGDGTs. CONCLUSIONS: Our results indicate that the HTGC/P/IRMS method developed here is appropriate to determine the δ2 H values of TGs, GDGTs with up to two cyclisations, and potentially other high molecular weight compounds. The methodology will widen the current analytical window for biomarker and food light stable isotope analyses. Moreover, our initial measurements suggest that bacterial and archaeal GDGT δ2 H values can record environmental and ecological conditions.


Assuntos
Deutério/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lipídeos/química , Archaea/química , Bactérias/química , Peso Molecular , Solo/química , Temperatura
9.
Environ Microbiome ; 15(1): 3, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33902727

RESUMO

BACKGROUND: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. RESULTS: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. CONCLUSIONS: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.

10.
Geobiology ; 17(1): 60-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289610

RESUMO

Earth's atmospheric composition has changed significantly over geologic time. Many redox active atmospheric constituents have left evidence of their presence, while inert constituents such as dinitrogen gas (N2 ) are more elusive. In this study, we examine two potential biological indicators of atmospheric N2 : the morphological and isotopic signatures of heterocystous cyanobacteria. Biological nitrogen fixation constitutes the primary source of fixed nitrogen to the global biosphere and is catalyzed by the oxygen-sensitive enzyme nitrogenase. To protect this enzyme, some filamentous cyanobacteria restrict nitrogen fixation to microoxic cells (heterocysts) while carrying out oxygenic photosynthesis in vegetative cells. Heterocysts terminally differentiate in a pattern that is maintained as the filaments grow, and nitrogen fixation imparts a measurable isotope effect, creating two biosignatures that have previously been interrogated under modern N2 partial pressure (pN2 ) conditions. Here, we examine the effect of variable pN2 on these biosignatures for two species of the filamentous cyanobacterium Anabaena. We provide the first in vivo estimate of the intrinsic isotope fractionation factor of Mo-nitrogenase (εfix  = -2.71 ± 0.09‰) and show that, with decreasing pN2 , the net nitrogen isotope fractionation decreases for both species, while the heterocyst spacing decreases for Anabaena cylindrica and remains unchanged for Anabaena variabilis. These results are consistent with the nitrogen fixation mechanisms available in the two species. Application of these quantifiable effects to the geologic record may lead to new paleobarometric measurements for pN2 , ultimately contributing to a better understanding of Earth's atmospheric evolution.


Assuntos
Anabaena/fisiologia , Fixação de Nitrogênio/fisiologia , Isótopos de Nitrogênio/análise , Nitrogenase/metabolismo , Anabaena/enzimologia , Pressão Parcial
11.
J Bacteriol ; 200(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30249710

RESUMO

Chronic lung infections in cystic fibrosis (CF) could be treated more effectively if the effects of antimicrobials on pathogens in situ were known. Here, we compared changes in the microbial community composition and pathogen growth rates in longitudinal studies of seven pediatric CF patients undergoing intravenous antibiotic administration during pulmonary exacerbations. The microbial community composition was determined by counting rRNA with NanoString DNA analysis, and growth rates were obtained by incubating CF sputum with heavy water and tracing incorporation of deuterium into two branched-chain ("anteiso") fatty acids (a-C15:0 and a-C17:0) using gas chromatography-mass spectrometry (GC/MS). Prior to this study, both lipids were thought to be specific for Staphylococcaceae; hence, their isotopic enrichment was interpreted as a growth proxy for Staphylococcus aureus Our experiments revealed, however, that Prevotella is also a relevant microbial producer of a-C17:0 fatty acid in some CF patients; thus, deuterium incorporation into these lipids is better interpreted as a more general pathogen growth rate proxy. Even accounting for a small nonmicrobial background source detected in some patient samples, a-C15:0 fatty acid still appears to be a relatively robust proxy for CF pathogens, revealing a median generation time of ∼1.5 days, similar to prior observations. Contrary to our expectation, pathogen growth rates remained relatively stable throughout exacerbation treatment. We suggest two straightforward "best practices" for application of stable-isotope probing to CF sputum metabolites: (i) parallel determination of microbial community composition in CF sputum using culture-independent tools and (ii) assessing background levels of the diagnostic metabolite.IMPORTANCE In chronic lung infections, populations of microbial pathogens change and mature in ways that are often unknown, which makes it challenging to identify appropriate treatment options. A promising tool to better understand the physiology of microorganisms in a patient is stable-isotope probing, which we previously developed to estimate the growth rates of S. aureus in cystic fibrosis (CF) sputum. Here, we tracked microbial communities in a cohort of CF patients and found that anteiso fatty acids can also originate from other sources in CF sputum. This awareness led us to develop a new workflow for the application of stable-isotope probing in this context, improving our ability to estimate pathogen generation times in clinical samples.


Assuntos
Antibacterianos/administração & dosagem , Fibrose Cística/tratamento farmacológico , Ácidos Graxos/análise , Pneumopatias/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/crescimento & desenvolvimento , Adolescente , Antibacterianos/farmacologia , Criança , Fibrose Cística/microbiologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Marcação por Isótopo , Estudos Longitudinais , Pneumopatias/microbiologia , Masculino , Microbiota , Escarro/efeitos dos fármacos , Escarro/metabolismo , Escarro/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Resultado do Tratamento , Adulto Jovem
12.
Rapid Commun Mass Spectrom ; 32(24): 2129-2140, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30252972

RESUMO

RATIONALE: Microbial growth rate is an important physiological parameter that is challenging to measure in situ, partly because microbes grow slowly in many environments. Recently, it has been demonstrated that generation times of S. aureus in cystic fibrosis (CF) infections can be determined by D2 O-labeling of actively synthesized fatty acids. To improve species specificity and allow growth rate monitoring for a greater range of pathogens during the treatment of infections, it is desirable to accurately quantify trace incorporation of deuterium into phospholipids. METHODS: Lipid extracts of D2 O-treated E. coli cultures were measured on liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) instruments equipped with time-of-flight (TOF) and orbitrap mass analyzers, and used for comparison with the analysis of fatty acids by isotope-ratio gas chromatography (GC)/MS. We then developed an approach to enable tracking of lipid labeling, by following the transition from stationary into exponential growth in pure cultures. Lastly, we applied D2 O-labeling lipidomics to clinical samples from CF patients with chronic lung infections. RESULTS: Lipidomics facilitates deuterium quantification in lipids at levels that are useful for many labeling applications (>0.03 at% D). In the E. coli cultures, labeling dynamics of phospholipids depend largely on their acyl chains and between phospholipids we notice differences that are not obvious from absolute concentrations alone. For example, cyclopropyl-containing lipids reflect the regulation of cyclopropane fatty acid synthase, which is predominantly expressed at the beginning of stationary phase. The deuterium incorporation into a lipid that is specific for S. aureus in CF sputum indicates an average generation time of the pathogen on the order of one cell doubling per day. CONCLUSIONS: This study demonstrates how trace level measurement of stable isotopes in intact lipids can be used to quantify lipid metabolism in pure cultures and provides guidelines that enable growth rate measurements in microbiome samples after incubation with a low percentage of D2 O.


Assuntos
Fibrose Cística/microbiologia , Deutério/química , Escherichia coli/crescimento & desenvolvimento , Ácidos Graxos/química , Staphylococcus aureus/crescimento & desenvolvimento , Água/química , Cromatografia Líquida , Deutério/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Humanos , Cinética , Metabolismo dos Lipídeos , Espectrometria de Massas por Ionização por Electrospray , Escarro/química , Escarro/microbiologia , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Água/metabolismo
13.
Environ Microbiol ; 20(2): 671-692, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29159966

RESUMO

While the collective impact of marine viruses has become more apparent over the last decade, a deeper understanding of virus-host dynamics and the role of viruses in nutrient cycling would benefit from direct observations at the single-virus level. We describe two new complementary approaches - stable isotope probing coupled with nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence-based biorthogonal non-canonical amino acid tagging (BONCAT) - for studying the activity and biogeochemical influence of marine viruses. These tools were developed and tested using several ecologically relevant model systems (Emiliania huxleyi/EhV207, Synechococcus sp. WH8101/Syn1 and Escherichia coli/T7). By resolving carbon and nitrogen enrichment in viral particles, we demonstrate the power of nanoSIMS tracer experiments in obtaining quantitative estimates for the total number of viruses produced directly from a particular production pathway (by isotopically labelling host substrates). Additionally, we show through laboratory experiments and a pilot field study that BONCAT can be used to directly quantify viral production (via epifluorescence microscopy) with minor sample manipulation and no dependency on conversion factors. This technique can also be used to detect newly synthesized viral proteins. Together these tools will help fill critical gaps in our understanding of the biogeochemical impact of viruses in the ocean.


Assuntos
Interações entre Hospedeiro e Microrganismos , Marcação por Isótopo , Espectrometria de Massa de Íon Secundário , Vírus , Microbiologia da Água , Aminoácidos/análise , Fluorescência , Haptófitas , Synechococcus , Fenômenos Fisiológicos Virais
14.
Proc Natl Acad Sci U S A ; 113(2): E110-6, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26715741

RESUMO

Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients.


Assuntos
Fibrose Cística/microbiologia , Óxido de Deutério/metabolismo , Escarro/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Adolescente , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criança , Fibrose Cística/tratamento farmacológico , Ácidos Graxos/metabolismo , Feminino , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Marcação por Isótopo , Masculino , Nanotecnologia , Espectrometria de Massa de Íon Secundário , Escarro/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Incerteza , Adulto Jovem
15.
mBio ; 6(4): e00767, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26220964

RESUMO

UNLABELLED: Severe and persistent bacterial lung infections characterize cystic fibrosis (CF). While several studies have documented the microbial diversity within CF lung mucus, we know much less about the inorganic chemistry that constrains microbial metabolic processes and their distribution. We hypothesized that sputum is chemically heterogeneous both within and between patients. To test this, we measured microprofiles of oxygen and sulfide concentrations as well as pH and oxidation-reduction potentials in 48 sputum samples from 22 pediatric patients with CF. Inorganic ions were measured in 20 samples from 12 patients. In all cases, oxygen was depleted within the first few millimeters below the sputum-air interface. Apart from this steep oxycline, anoxia dominated the sputum environment. Different sputum samples exhibited a broad range of redox conditions, with either oxidizing (16 mV to 355 mV) or reducing (-300 to -107 mV) potentials. The majority of reduced samples contained hydrogen sulfide and had a low pH (2.9 to 6.5). Sulfide concentrations increased at a rate of 0.30 µM H2S/min. Nitrous oxide was detected in only one sample that also contained sulfide. Microenvironmental variability was observed both within a single patient over time and between patients. Modeling oxygen dynamics within CF mucus plugs indicates that anoxic zones vary as a function of bacterial load and mucus thickness and can occupy a significant portion of the mucus volume. Thus, aerobic respiration accounts only partially for pathogen survival in CF sputum, motivating research to identify mechanisms of survival under conditions that span fluctuating redox states, including sulfidic environments. IMPORTANCE: Microbial infections are the major cause of morbidity and mortality in people living with CF, and yet microbial growth and survival in CF airways are not well understood. Insufficient information about the chemistry of the in vivo environment contributes to this knowledge gap. Our documentation of variable redox states corresponding to the presence or absence of sulfide begins to fill this void and motivates understanding of how different opportunistic pathogens adapt in these dynamic environments. Given the changing chemical state of CF sputum over time, it is important to consider a spectrum of aerobic and anaerobic lifestyles when studying CF pathogens in the laboratory. This work not only provides relevant constraints that can shape the design of laboratory experiments, it also suggests that sulfide might be a useful proxy for assessing the redox state of sputum in the clinic.


Assuntos
Fibrose Cística/complicações , Sulfeto de Hidrogênio/análise , Pneumonia Bacteriana/patologia , Escarro/química , Adolescente , Anaerobiose , Criança , Pré-Escolar , Fibrose Cística/patologia , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/análise
16.
Environ Microbiol ; 17(7): 2542-56, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25655651

RESUMO

To measure single-cell microbial activity and substrate utilization patterns in environmental systems, we employ a new technique using stable isotope labelling of microbial populations with heavy water (a passive tracer) and (15) N ammonium in combination with multi-isotope imaging mass spectrometry. We demonstrate simultaneous NanoSIMS analysis of hydrogen, carbon and nitrogen at high spatial and mass resolution, and report calibration data linking single-cell isotopic compositions to the corresponding bulk isotopic equivalents for Pseudomonas aeruginosa and Staphylococcus aureus. Our results show that heavy water is capable of quantifying in situ single-cell microbial activities ranging from generational time scales of minutes to years, with only light isotopic incorporation (∼0.1 atom % (2) H). Applying this approach to study the rates of fatty acid biosynthesis by single cells of S. aureus growing at different rates in chemostat culture (∼6 h, 1 day and 2 week generation times), we observe the greatest anabolic activity diversity in the slowest growing populations. By using heavy water to constrain cellular growth activity, we can further infer the relative contributions of ammonium versus amino acid assimilation to the cellular nitrogen pool. The approach described here can be applied to disentangle individual cell activities even in nutritionally complex environments.


Assuntos
Óxido de Deutério/metabolismo , Isótopos de Nitrogênio/metabolismo , Pseudomonas aeruginosa/metabolismo , Espectrometria de Massa de Íon Secundário/métodos , Staphylococcus aureus/metabolismo , Aminoácidos/metabolismo , Compostos de Amônio/química , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ácidos Graxos/biossíntese , Hidrogênio/metabolismo , Marcação por Isótopo/métodos , Nitrogênio/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento
17.
Environ Sci Technol ; 47(6): 2602-11, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23402562

RESUMO

This study introduces a newly isolated, genetically tractable bacterium ( Pseudogulbenkiania sp. strain MAI-1) and explores the extent to which its nitrate-dependent iron-oxidation activity is directly biologically catalyzed. Specifically, we focused on the role of iron chelating ligands in promoting chemical oxidation of Fe(II) by nitrite under anoxic conditions. Strong organic ligands such as nitrilotriacetate and citrate can substantially enhance chemical oxidation of Fe(II) by nitrite at circumneutral pH. We show that strain MAI-1 exhibits unambiguous biological Fe(II) oxidation despite a significant contribution (∼30-35%) from ligand-enhanced chemical oxidation. Our work with the model denitrifying strain Paracoccus denitrificans further shows that ligand-enhanced chemical oxidation of Fe(II) by microbially produced nitrite can be an important general side effect of biological denitrification. Our assessment of reaction rates derived from literature reports of anaerobic Fe(II) oxidation, both chemical and biological, highlights the potential competition and likely co-occurrence of chemical Fe(II) oxidation (mediated by microbial production of nitrite) and truly biological Fe(II) oxidation.


Assuntos
Ferro/metabolismo , Neisseriaceae/metabolismo , Nitratos/metabolismo , Quelantes/metabolismo , Desnitrificação , Compostos Ferrosos/metabolismo , Ligantes , Oxirredução , Paracoccus denitrificans/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...