Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(23): 6507-6522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36541038

RESUMO

Coccolithophores have global ecological and biogeochemical significance as the most important calcifying marine phytoplankton group. The structure and selection of prokaryotic communities associated with the most abundant coccolithophore and bloom-forming species, Emiliania huxleyi, are still poorly known. In this study, we assessed the diversity of bacterial communities associated with an E. huxleyi bloom in the Celtic Sea (Eastern North Atlantic), exposed axenic E. huxleyi cultures to prokaryotic communities derived from bloom and non-bloom conditions, and followed the dynamics of their microbiome composition over one year. Bloom-associated prokaryotic communities were dominated by SAR11, Marine group II Euryarchaeota and Rhodobacterales and contained substantial proportions of known indicators of phytoplankton bloom demises such as Flavobacteriaceae and Pseudoalteromonadaceae. The taxonomic richness of bacteria derived from natural communities associated with axenic E. huxleyi rapidly shifted and then stabilized over time. The succession of microorganisms recruited from the environment was consistently dependent on the composition of the initial bacterioplankton community. Phycosphere-associated communities derived from the E. huxleyi bloom were highly similar to one another, suggesting deterministic processes, whereas cultures from non-bloom conditions show an effect of stochasticity. Overall, this work sheds new light on the importance of the initial inoculum composition in microbiome recruitment and elucidates the temporal dynamics of its composition and long-term stability.


Assuntos
Haptófitas , Microbiota , Haptófitas/genética , Fitoplâncton/genética , Organismos Aquáticos , Bactérias , Microbiota/genética
2.
Glob Chang Biol ; 28(4): 1560-1568, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808010

RESUMO

Rising ocean temperatures will alter the diversity of marine phytoplankton communities, likely leading to modifications in food-web and biogeochemical dynamics. Here we focus on coccolithophores, a prominent group of calcifying phytoplankton that plays a central role in the global carbon cycle. Using both new (2017-2020) and historical (1975-1976) data from the northern Red Sea, we found that during 'mild summers', the most common coccolithophores - Emiliania huxleyi and Gephyrocapsa ericsonii - co-exist at similar densities. Both species then particularly flourish during subsequent winter periods where nutrient availability is higher due to convective mixing. However, during 'hot summers', which have become progressively the norm over the last decades with average surface temperatures exceeding 27°C for long time-periods, G. ericsonii density markedly declined. Moreover, G. ericsonii remains at low background levels even during winter mixing periods, while E. huxleyi succession and development during winter appears unchanged. Further incubation assays using native assemblages confirmed that G. ericsonii's growth over 27°C is significantly reduced relative to E. huxleyi. Additional factors likely contribute to impair G. ericsonii populations at sea, but temperature is a key factor. Our results illustrate the divergent impact of ongoing ocean warming in tropical phytoplankton species.


Assuntos
Ecossistema , Haptófitas , Fitoplâncton , Estações do Ano , Temperatura
3.
Mol Phylogenet Evol ; 100: 51-56, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27050471

RESUMO

The order Aplousobranchia (Chordata, Ascidiacea) contains approximately 1500 species distributed worldwide. Their phylogeny, however, remains unclear, with unresolved family relationships. While most Aplousobranchia are colonial, debates exist concerning the phylogenetic position of families such as the Diazonidae and Cionidae, which exhibit a solitary lifestyle and share morphological characteristics with both Aplousobranchia and Phlebobranchia orders. To clarify the phylogenetic position of the Diazonidae and Cionidae, we determined the complete mitochondrial sequence of the solitary diazonid Rhopalaea idoneta. The phylogenetic reconstruction based on the 13 mitochondrial protein coding genes strongly supports a positioning of Diazonidae well-nested within the Aplousobranchia rather than a positioning as a sister clade of the Aplousobranchia. In addition, we examined the regenerative ability of R. idoneta. Similar to colonial Aplousobranchia, R. idoneta was found to be able to completely regenerate its thorax. Ciona, also known to possess high regenerative abilities, is the Aplousobranchia sister clade rather than a member of the Phlebobranchia. Our results thus indicate that the colonial lifestyle was acquired in the Aplousobranchia, starting from a Ciona-like solitary ancestor and secondarily lost in Diazonidae representatives such as Rhopalaea. The solitary lifestyle of Rhopalaea is thus a derived characteristic rather than an ancestral trait.


Assuntos
Filogenia , Urocordados/classificação , Urocordados/genética , Animais , Genoma Mitocondrial , Mitocôndrias/genética , Regeneração/genética , Urocordados/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA