Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 382: 129063, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37080439

RESUMO

Increasing global energy consumption and depleting fossil-fuel reserves prompted the search for green alternatives. This study focuses on conversion of waste agar using different acids/alkalis (0.5% and 1%) as catalysts under varied temperature and time towards galactose (Gal), 5-hydroxymethylfurfural (HMF) and levulinic acid (LA) production in sequential reactions. The optimized process for agar depolymerisation was achieved using 1% acid (H2SO4/HCl) catalysed conditions with a maximum of 11 g/L Gal yield (121 °C; 15 min). Increase in temperature (150 °C) and time (180 min) with 1% HCl/H2SO4 catalyst resulted in improved LA production along with Gal and HMF. The hydrolysis process was optimised for the selective production of LA (10 g/L at 175 °C; 180 min). Further, galactose-rich hydrolysates were assessed for bioethanol production using Saccharomyces cerevisiae that resulted in 3 g/L ethanol. Thus, the study comprehensively demonstrates waste agar utilization to yield biochemicals/fuels in a circular bio-based economy approach.


Assuntos
Galactose , Saccharomyces cerevisiae , Fermentação , Ágar , Ácidos Levulínicos , Hidrólise
2.
Bioresour Technol ; 379: 128954, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36963697

RESUMO

The study focuses on the effective conversion of sugarcane bagasse (SCB) by catalytic deoxygenation using various alkali and metal-based catalysts under N2 pressure employing water as solvent. The specific influence of catalyst over bio-crude yields (bio-oil and aqueous fraction) including energy recovery ratio was explored. The optimum catalytic condition (Ru/C) resulted in âˆ¼ 70% of bio-crude and 28% of bio-oil with an improved HHV (31.6 MJ/kg) having 11.6% of aliphatic/aromatic hydrocarbons (C10-C20) which can be further upgraded to drop-in fuels. The biocrude composed of 44% of aqueous soluble organic fraction (HTL-AF). Further, the carbon-rich HTL-AF was valorized through acidogenic fermentation to yield biohydrogen (Bio-H2). The maximum bio-H2 production of 201 mL/g of TOC conversion (K2CO3 catalyst) was observed with 7.7 g/L of VFA. The SCB was valorized in a biorefinery design with the production of fuels and chemical intermediates in a circular chemistry approach.


Assuntos
Celulose , Saccharum , Temperatura , Biocombustíveis , Água , Hidrocarbonetos , Biomassa
3.
Environ Pollut ; 324: 121320, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805470

RESUMO

Decentralized handlooms are being traditionally practised throughout India. Siripuram village known for traditional Pochampally/Ikat work was considered as a case study for detailed investigation towards providing a sustainable solution. Nearly 65% of village population solely depend on weaving and dyeing works as primary occupation based on the household survey and generated wash water of 127 KLD on an average from the dyeing operations. Initially, a topographical survey (Aerial drone; PHANTOM 4 RTK UAV) was carried out to understand the drainage pattern, elevations, contours and interlinked with domestic and dyeing functions. The characteristics of combined wastewater and dye wash water were studied at lab scale using sequential batch (SBR) operation under aerobic (SBRAe) and aerobic-anoxic (SBRAex) microenvironments. SBRAex microenvironment showed effective organic and nutrients removal due to infused anoxic microenvironment. Treatment studies depicted 76.2% of organic fraction, 73.3% of phosphate, and 81.6% of nitrate removal. Based on the lab scale studies a closed-loop decentralized effluent treatment system was designed to ensure zero-liquid discharge (ZLD).


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Águas Residuárias , Compostos Orgânicos , Têxteis , Corantes , Água , Poluentes Químicos da Água/análise
4.
Front Bioeng Biotechnol ; 10: 964070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213054

RESUMO

A closed loop algal-biorefinery was designed based on a three-stage integration of dairy wastewater (DWW) treatment, hydrothermal liquefaction (HTL) of defatted algal biomass, and acidogenic process in a semi-synthetic framework. Initially, Coelestrella sp SVMIICT5 was grown in a 5 L photo-bioreactor and scaled up to a 50 L flat-panel photo-bioreactor using DWW. The microalgal growth showed higher photosynthetic efficiency, resulting in a biomass growth of 3.2 g/L of DCW with 87% treatment efficiency. The biomolecular composition showed 26% lipids with a good fatty acid profile (C12-C21) as well as carbohydrate (24.9%) and protein (31.8%) content. In the second stage, the de-oiled algal biomass was valorized via HTL at various temperatures (150°C, 200°, and 250°C) and reaction atmospheres (N2 and H2). Among these, the 250°C (H2) condition showed a 52% bio-crude fraction and an HHV of ∼29.47 MJ/kg (bio-oil) with a saturated hydrocarbon content of 64.3% that could be further upgraded to jet fuels. The energy recovery (73.01%) and elemental enrichment (carbon; 65.67%) were relatively greater in H2 compared to N2 conditions. Finally, dark fermentation of the complex-structured HTL-AF stream resulted in a total bio-H2 production of 231 ml/g of TOC with a 63% treatment efficiency. Life cycle analysis (LCA) was also performed for the mid-point and damage categories to assess the sustainability of the integrated process. Thus, the results of this study demonstrated comprehensive wastewater treatment and valorization of de-oiled algal biomass for chemical/fuel intermediates in the biorefinery context by low-carbon processes.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35270390

RESUMO

Wastewater-based epidemiology (WBE) is emerging as a potential approach to study the infection dynamics of SARS-CoV-2 at a community level. Periodic sewage surveillance can act as an indicative tool to predict the early surge of pandemic within the community and understand the dynamics of infection and, thereby, facilitates for proper healthcare management. In this study, we performed a long-term epidemiological surveillance to assess the SARS-CoV-2 spread in domestic sewage over one year (July 2020 to August 2021) by adopting longitudinal sampling to represent a selected community (~2.5 lakhs population). Results indicated temporal dynamics in the viral load. A consistent amount of viral load was observed during the months from July 2020 to November 2020, suggesting a higher spread of the viral infection among the community, followed by a decrease in the subsequent two months (December 2020 and January 2021). A marginal increase was observed during February 2021, hinting at the onset of the second wave (from March 2021) that reached it speak in April 2021. Dynamics of the community infection rates were calculated based on the viral gene copies to assess the severity of COVID-19 spread. With the ability to predict the infection spread, longitudinal WBE studies also offer the prospect of zoning specific areas based on the infection rates. Zoning of the selected community based on the infection rates assists health management to plan and manage the infection in an effective way. WBE promotes clinical inspection with simultaneous disease detection and management, in addition to an advance warning signal to anticipate outbreaks, with respect to the slated community/zones, to tackle, prepare for and manage the pandemic.


Assuntos
COVID-19 , Águas Residuárias , COVID-19/epidemiologia , Humanos , SARS-CoV-2 , Esgotos , Vigilância Epidemiológica Baseada em Águas Residuárias
6.
Rev Environ Sci Biotechnol ; 21(1): 169-203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103051

RESUMO

Micro/nanoplastics (MP/NPs) are emerging global pollutants that garnered enormous attention due to their potential threat to the ecosystem in virtue of their persistence and accumulation. Notably, United Nations Environment Programme (UNEP) yearbook in 2014 proposed MPs as one among ten emergent issues that the Earth is facing today. MP/NPs can be found in most regularly used products (primary microplastics) or formed by the fragmentation of bigger plastics (secondary microplastics) and are inextricably discharged into the environment by terrestrial and land-based sources, particularly runoff. They are non-degradable, biologically incompatible, and their presence in the air, soil, water, and food can induce ecotoxicological issues and also a menace to the environment. Due to micro size and diverse chemical nature, MP/NPs easily infiltrate wastewater treatment processes. This communication reviews the current understanding of MP/NPs occurrence, mobility, aggregation behavior, and degradation/assimilation in terrestrial, aquatic (fresh & marine), atmospheric depositions, wetlands and trophic food chain. This communication provide current perspectives and understanding on MP/NPs concerning (1) Source, occurrence, distribution, and properties (2) Impact on the ecosystem and its services, (3) Techniques in detection and identification and (4) Strategies to manage and mitigation.

8.
Bioresour Technol ; 341: 125735, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34461403

RESUMO

Owing to their biodegradability and renewability, biopolymers are being employed in industrial and bio-medical sectors as sustainable alternatives to chemical based polymers. In the present study, isolated Providencia sp. depicted dual production of intra and extracellular biopolymers, polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS), respectively. The polymer production process was optimised by varying process parameters such as carbon load (20, 30 and 40 g L-1) and pH (6, 7 and 8) for enhancing PHB and EPS productivity. Maximum yield of both PHB (2.62 g L-1) and EPS (3.92 g L-1) was observed with carbon load of 30 g L-1 at pH 7. Scale-up studies were performed with optimized conditions and PHB and EPS production of 2.62 g L-1 and 3.91 g L-1, respectively was observed. The extracted EPS and PHB were characterized using FT-IR, FE-SEM-EDX, H1 and C13 NMR and fluorescence microscopy.


Assuntos
Bactérias , Matriz Extracelular de Substâncias Poliméricas , Biopolímeros , Carbono , Hidroxibutiratos , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Environ Technol Innov ; 23: 101696, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34250217

RESUMO

Since COVID-19 outbreak, wastewater-based epidemiology (WBE) studies as surveillance system is becoming an emerging interest due to its functional advantage as a tool for early warning signal and to catalyze effective disease management strategies based on the community diagnosis. An attempt was made in this study to define and establish a methodological approach for conducting WBE studies in the framework of identifying/selection of surveillance sites, standardizing sampling policy, designing sampling protocols to improve sensitivity, adopting safety protocol, and interpreting the data. Data from hourly sampling indicated a peak in the viral RNA during the morning hours (6-9 am) when the all the domestic activities are maximum. The daily sampling and processing revealed the dynamic nature of infection spread among the population. The two sampling methods viz. grab, and composite showed a good correlation. Overall, this study establishes a structured protocol for performing WBE studies that could provide useful insights on the spread of the pandemic at a given point of time. Moreover, this framework could be extrapolated to monitor several other clinically relevant diseases. Following these guidelines, it is possible to achieve measurable and reliable SARS-CoV-2 RNA concentrations in wastewater infrastructure and therefore, provides a methodological basis for the establishment of a national surveillance system.

10.
Sci Total Environ ; 768: 144704, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736319

RESUMO

SARS-CoV-2 pandemic is having a devastating effect on human lives. Recent reports have shown that majority of the individuals recovered from COVID-19 have serious health complications, which is going to be a huge economic burden globally. Given the wide-spread transmission of SARS-CoV-2 it is almost impossible to test every individual in densely populated countries. Recent reports have shown that sewage-based surveillance can be used as holistic approach to understand the spread of the pandemic within a population or area. Here we have estimated the spread of SARS-CoV-2 in the city of Hyderabad, India, which is a home for nearly 10 million people. The sewage samples were collected from all the major sewage treatment plants (STPs) and were processed for detecting the viral genome using the standard Reverse Transcription Polymerase Chain Reaction (RT-PCR) method. Interestingly, inlet samples of STPs were positive for SARS-CoV-2, while the outlets were negative, which indicates that the standard sewage treatment methods are efficient in eliminating the SARS-CoV-2 viral particles. Based on the detected viral gene copies per litre and viral particle shedding per individual, the total number of individuals exposed to SARS-CoV-2 was estimated. Through this study we suggest that sewage-based surveillance is an effective approach to study the infection dynamics, which helps in efficient management of the SARS-CoV-2 spread.


Assuntos
COVID-19 , SARS-CoV-2 , Cidades , Humanos , Índia , Águas Residuárias
11.
Chem Eng J ; 405: 126893, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901196

RESUMO

The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (ßCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.

12.
Bioresour Technol ; 310: 123369, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32335345

RESUMO

Municipal solid waste (MSW), an inexorable by-product of anthropogenic activities composes of nearly 50% of the organic (biogenic) fraction. Hydrothermal liquefaction (HTL) was studied to facilitate thermal depolymerization of organic fraction of MSW to biocrude at sub-critical region of water (200 °C; 100 bar pressure) employing H2 induced reducing conditions. Food, vegetable, and composite wastes were evaluated as feedstocks to produce HTL derivatives in the form of liquor (biocrude and aqueous phase), biochar and bio-gas. The biocrude (HTLOF) showed middle oil as major fraction along with C6-C22 compounds. Composite waste resulted in relatively higher yield of biocrude fraction. The aqueous phase (HTLAF) documented the presence of reducing sugars, sotolon and furfurals as major fraction. Biochar (HTLBC) composition showed maximum carbon fraction followed by hydrogen and oxygen. H2 induced reduced condition facilitated conversion of the biogenic MSW at relatively lower input conditions to various biobased fractions cohesively addressing the basic biorefinery requirement.


Assuntos
Biocombustíveis , Resíduos Sólidos , Atmosfera , Temperatura , Água
13.
Bioresour Technol ; 309: 123327, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32330802

RESUMO

Production of bio-based alternative of succinic acid (SA) has been growing due to the awareness on environmental advantages it offers, such as CO2 sequestration. Current study focuses on evaluating the impact of different CO2 partial pressures (0.6, 0.8, 1, 2 bar) on SA production and yield as well as on other parameters like acids profile and CO2 fixation rate in Citrobacter amalonaticus. Increasing partial pressure to 2 bar enhanced SA production and maximum of 14.86 gL-1 was achieved with a productivity of 0.36 gL-1h-1 and yield of 52.10%. Varying partial pressures depicted significant influence on total acids profile, where at lower pressures (0.6 bar) lactic (5.6 gL-1) and acetic acids (4.1 gL-1) became dominant products, while concentration of SA was 2.07 gL-1, by the end of cycle. The desirable effect of moderately elevated pressures for converting CO2 to platform chemicals can be a potential strategy in overcoming current challenges related to CO2 abatement.


Assuntos
Dióxido de Carbono , Ácido Succínico , Citrobacter , Fermentação , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...