Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 244: 705-714, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30384076

RESUMO

A severe air quality degradation event occurred in the Santiago Metropolitan Area (SMA), Chile, in June 2014. Meteorological and air quality measurements from 11 stations in the area as well as numerical simulations using the Weather and Research Forecasting (WRF) model were used to explain the main reasons for the occurrence of elevated particulate matter (PM) concentrations. The conditions were characterized with formation of a coastal low in central Chile between the southeastern anticyclone and a high-pressure system over Argentina. At a local scale, these conditions generated a depression at the base of the inversion layer, an increase in the vertical thermal stability, lower humidity and low-wind conditions, which were conducive to a decrease in pollutant dispersion and insufficient ventilation of the polluted air. Measurements and simulations using the WRF model revealed a vertical structure of the boundary layer during these stagnant conditions and provided a basis for a trajectory analysis. The back-trajectory calculation showed that the transport of air parcels was contained in the valley during the highest concentrations. The analysis also enabled the definition of the threshold values of a simple indicator of air pollution (ventilation coefficient, VC), which confirmed the evolution of the episode and divided the observed daily concentrations into two groups, with one including values above the limits prescribed by the national air quality standards (NAQS) and the other including values below these limits. For the SMA, the daily PM concentrations above the NASQ limits were associated with an overall mean threshold value of VC below 500 m2 s-1 (for PM2.5) and 300 m2 s-1 (for PM10). To apply the VC analysis to other pollutants and different geographic locations, different threshold values should be evaluated.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Tempo (Meteorologia) , Chile , Umidade , Vento
2.
J Air Waste Manag Assoc ; 61(6): 660-72, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21751582

RESUMO

The main objective of this study was to investigate the capabilities of the receptor-oriented inverse mode Lagrangian Stochastic Particle Dispersion Model (LSPDM) with the 12-km resolution Mesoscale Model 5 (MM5) wind field input for the assessment of source identification from seven regions impacting two receptors located in the eastern United States. The LSPDM analysis was compared with a standard version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) single-particle backward-trajectory analysis using inputs from MM5 and the Eta Data Assimilation System (EDAS) with horizontal grid resolutions of 12 and 80 km, respectively. The analysis included four 7-day summertime events in 2002; residence times in the modeling domain were computed from the inverse LSPDM runs and HYPSLIT-simulated backward trajectories started from receptor-source heights of 100, 500, 1000, 1500, and 3000 m. Statistics were derived using normalized values of LSPDM- and HYSPLIT-predicted residence times versus Community Multiscale Air Quality model-predicted sulfate concentrations used as baseline information. From 40 cases considered, the LSPDM identified first- and second-ranked emission region influences in 37 cases, whereas HYSPLIT-MM5 (HYSPLIT-EDAS) identified the sources in 21 (16) cases. The LSPDM produced a higher overall correlation coefficient (0.89) compared with HYSPLIT (0.55-0.62). The improvement of using the LSPDM is also seen in the overall normalized root mean square error values of 0.17 for LSPDM compared with 0.30-0.32 for HYSPLIT. The HYSPLIT backward trajectories generally tend to underestimate near-receptor sources because of a lack of stochastic dispersion of the backward trajectories and to overestimate distant sources because of a lack of treatment of dispersion. Additionally, the HYSPLIT backward trajectories showed a lack of consistency in the results obtained from different single vertical levels for starting the backward trajectories. To alleviate problems due to selection of a backward-trajectory starting level within a large complex set of 3-dimensional winds, turbulence, and dispersion, results were averaged from all heights, which yielded uniform improvement against all individual cases.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Processos Estocásticos , Movimentos do Ar , Poluição do Ar , Modelos Teóricos , Estados Unidos
3.
J Air Waste Manag Assoc ; 60(1): 26-42, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20102033

RESUMO

The ability of receptor models to estimate regional contributions to fine particulate matter (PM2.5) was assessed with synthetic, speciated datasets at Brigantine National Wildlife Refuge (BRIG) in New Jersey and Great Smoky Mountains National Park (GRSM) in Tennessee. Synthetic PM2.5 chemical concentrations were generated for the summer of 2002 using the Community Multiscale Air Quality (CMAQ) model and chemically speciated PM2.5 source profiles from the U.S. Environmental Protection Agency (EPA)'s SPECIATE and Desert Research Institute's source profile databases. CMAQ estimated the "true" contributions of seven regions in the eastern United States to chemical species concentrations and individual source contributions to primary PM2.5 at both sites. A seven-factor solution by the positive matrix factorization (PMF) receptor model explained approximately 99% of the variability in the data at both sites. At BRIG, PMF captured the first four major contributing sources (including a secondary sulfate factor), although diesel and gasoline vehicle contributions were not separated. However, at GRSM, the resolved factors did not correspond well to major PM2.5 sources. There were no correlations between PMF factors and regional contributions to sulfate at either site. Unmix produced five- and seven-factor solutions, including a secondary sulfate factor, at both sites. Some PMF factors were combined or missing in the Unmix factors. The trajectory mass balance regression (TMBR) model apportioned sulfate concentrations to the seven source regions using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) trajectories based on Meteorological Model Version 5 (MM5) and Eta Data Simulation System (EDAS) meteorological input. The largest estimated sulfate contributions at both sites were from the local regions; this agreed qualitatively with the true regional apportionments. Estimated regional contributions depended on the starting elevation of the trajectories and on the meteorological input data.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Modelos Químicos , Sulfatos/análise , Monitoramento Ambiental , Análise Multivariada
4.
J Air Waste Manag Assoc ; 60(1): 43-54, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20102034

RESUMO

To elucidate the relationship between factors resolved by the positive matrix factorization (PMF) receptor model and actual emission sources and to refine the PMF modeling strategy, speciated PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) data generated from a state-of-the-art chemical transport model for two rural sites in the eastern United States are subjected to PMF analysis. In addition to chi2 and R2 used to infer the quality of fitting, the interpretability of PMF factors with respect to known primary and secondary sources is evaluated using a root mean square difference analysis. For the most part, factors are found to represent imperfect combinations of sources, and the optimal number of factors should be just adequate to explain the input data (e.g., R2 > 0.95). Retaining more factors in the model does not help resolve minor sources, unless temporal resolution of the data is increased, thus allowing more information to be used by the model. If guided with a priori knowledge of source markers and/or special events, rotation of factors leads to more interpretable PMF factors. The choice of uncertainty weighting coefficients greatly influences the PMF modeling results, but it cannot usually be determined for simulated or real-world data. A simple test is recommended to check whether the weighting coefficients are suitable. However, uncertainties in the data divert PMF solutions even when the optimal weighting coefficients and number of factors are in place.


Assuntos
Poluição do Ar , Modelos Químicos , Material Particulado , Simulação por Computador , Análise Multivariada , Incerteza
5.
J Air Waste Manag Assoc ; 60(1): 26-42, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28880127

RESUMO

The ability of receptor models to estimate regional contributions to fine particulate matter (PM2.5) was assessed with synthetic, speciated datasets at Brigantine National Wildlife Refuge (BRIG) in New Jersey and Great Smoky Mountains National Park (GRSM) in Tennessee. Synthetic PM2.5 chemical concentrations were generated for the summer of 2002 using the Community Multiscale Air Quality (CMAQ) model and chemically speciated PM2.5 source profiles from the U.S. Environmental Protection Agency (EPA)'s SPECIATE and Desert Research Institute's source profile databases. CMAQ estimated the "true" contributions of seven regions in the eastern United States to chemical species concentrations and individual source contributions to primary PM2.5 at both sites. A seven-factor solution by the positive matrix factorization (PMF) receptor model explained approximately 99% of the variability in the data at both sites. At BRIG, PMF captured the first four major contributing sources (including a secondary sul-fate factor), although diesel and gasoline vehicle contributions were not separated. However, at GRSM, the resolved factors did not correspond well to major PM2.5 sources. There were no correlations between PMF factors and regional contributions to sulfate at either site. Unmix produced five- and seven-factor solutions, including a secondary sulfate factor, at both sites. Some PMF factors were combined or missing in the Unmix factors. The trajectory mass balance regression (TMBR) model apportioned sulfate concentrations to the seven source regions using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) trajectories based on Meteorological Model Version 5 (MM5) and Eta Data Simulation System (EDAS) meteorological input. The largest estimated sulfate contributions at both sites were from the local regions; this agreed qualitatively with the true regional apportionments. Estimated regional contributions depended on the starting elevation of the trajectories and on the meteorological input data.

6.
J Air Waste Manag Assoc ; 60(1): 43-54, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28880129

RESUMO

To elucidate the relationship between factors resolved by the positive matrix factorization (PMF) receptor model and actual emission sources and to refine the PMF modeling strategy, speciated PM2.5 (particulate matter with aerodynamic diameter <2.5 µm) data generated from a state-of-the-art chemical transport model for two rural sites in the eastern United States are subjected to PMF analysis. In addition to χ-2 and R 2 used to infer the quality of fitting, the interpretability of PMF factors with respect to known primary and secondary sources is evaluated using a root mean square difference analysis. For the most part, factors are found to represent imperfect combinations of sources, and the optimal number of factors should be just adequate to explain the input data (e.g., R 2 > 0.95). Retaining more factors in the model does not help resolve minor sources, unless temporal resolution of the data is increased, thus allowing more information to be used by the model. If guided with a priori knowledge of source markers and/or special events, rotation of factors leads to more interpretable PMF factors. The choice of uncertainty weighting coefficients greatly influences the PMF modeling results, but it cannot usually be determined for simulated or real-world data. A simple test is recommended to check whether the weighting coefficients are suitable. However, uncertainties in the data divert PMF solutions even when the optimal weighting coefficients and number of factors are in place.

7.
Artigo em Inglês | MEDLINE | ID: mdl-16779929

RESUMO

Chemically speciated PM2.5 and particle-bound polycyclic aromatic hydrocarbon (PAH) measurements were made at three sites near urban Tong Liang, Chongqing, a Chinese inland city where coal combustion is used for electricity generation and residential purposes outside of the central city. Ambient sampling was based on 72-hr averages between 3/2/2002 and 2/26/2003. Elevated PM2.5 and PAH concentrations were observed at all three sites, with the highest concentrations found in winter and the lowest in summer. This reflects a coupling effect of source variability and meteorological conditions. The PM2.5 mass estimated from sulfate, nitrate, ammonium, organics, elemental carbon, crustal material, and salt corresponded with the annual average gravimetric mass within +/-10%. Carbonaceous aerosol was the dominant species, while positive correlations between organic carbon and trace elements (e.g., As, Se, Br, Pb, and Zn) were consistent with coal-burning and motor vehicle contributions. Ambient particle-bound PAHs of molecular weight 168-266 were enriched by 1.5 to 3.5 times during the coal-fired power plant operational period. However, further investigation is needed to determine the relative contribution from residential and utility coal combustion and vehicular activities.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Tamanho da Partícula , Centrais Elétricas , Chuva , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...