Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Liq ; 367(Pt A)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37790165

RESUMO

In all biologically relevant media, proteins interact in the presence of surrounding ions, and such interactions are water-mediated. Water molecules play a crucial role in the restructuring of proteins in solution and indeed in their biological activity. Surface water dynamics and proton exchange at protein surfaces is investigated here using NMR relaxometry, for two well-known globular proteins, lysozyme and bovine serum albumin, with particular attention to the role of surface ions. We present a unified model of surface water dynamics and proton exchange, accounting simultaneously for the observed longitudinal and transverse relaxation rates. The most notable effect of salt (0.1 M) concerns the slow surface water dynamics, related to rare water molecules embedded in energy wells on the protein surface. This response is protein-specific. On the other hand, the proton exchange time between labile protein-protons and water-protons at the protein surface seems to be very similar for the two proteins and is insensitive to the addition of salts at the concentration studied.

2.
Magn Reson (Gott) ; 3(2): 125-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37904868

RESUMO

How can the transport of fluids in a confined and complex mixed organic/inorganic matrix be far below the expected value from a topological aspect? A good example of this situation is oil shales. Oil and gas shales are source rocks in which organic matter has matured to form hydrocarbons. They exhibit a dual porous network formed by the intertwining of mineral and organic pores that leads to very low permeability. Still, the exact origin of this extremely low permeability remains somehow unclear. The present communication addresses this important question and provides novel insights on the mechanisms that strongly hinder fluid diffusion in such materials. By combining nuclear and electronic magnetic resonance techniques with SEM imaging, we show evidence that magnetic interaction occurs in kerogen. This results from a magnetic coupling between vanadyl present in porphyrins and the organic matrix. We demonstrate that such coupling retards fluid diffusion and is reversible. This key dynamical feature explains the extremely low mobility of oil in shale rocks. This phenomenon may be a more general feature occurring in several systems where fluids are confined in a complex hierarchical matrix that embeds both organic and inorganic radicals resulting from the aging process.

3.
J Phys Chem B ; 125(31): 8673-8681, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342225

RESUMO

Proteins function in crowded aqueous environments, interacting with a diverse range of compounds, and among them, dissolved ions. These interactions are water-mediated. In the present study, we combine field-dependent NMR relaxation (NMRD) and theory to probe water dynamics on the surface of proteins in concentrated aqueous solutions of hen egg-white lysozyme (LZM) and bovine serum albumin (BSA). The experiments reveal that the presence of salts (NaCl or NaI) leads to an opposite ion-specific response for the two proteins: an addition of salt to LZM solutions increases water relaxation rates with respect to the salt-free case, while for BSA solutions, a decrease is observed. The magnitude of the change depends on the ion identity. The developed model accounts for the non-Lorentzian shape of the NMRD profiles and reproduces the experimental data over four decades in Larmor frequency (10 kHz to 110 MHz). It is applicable up to high protein concentrations. The model incorporates the observed ion-specific effects via changes in the protein surface roughness, represented by the surface fractal dimension, and the accompanying changes in the surface water residence times. The response is protein-specific, linked to geometrical aspects of the individual protein surfaces, and goes beyond protein-independent Hofmeister-style ordering of ions.


Assuntos
Soroalbumina Bovina , Água , Íons , Espectroscopia de Ressonância Magnética
4.
J Colloid Interface Sci ; 593: 21-31, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33730653

RESUMO

HYPOTHESIS: The objective is to noninvasively probe the local hydrocarbon dynamics at asphaltene/maltene interfaces to reveal the global characteristics of bitumen at increasing temperatures and under various mechanical constraints. EXPERIMENTS: We propose multidimensional (1D and 2D) nuclear magnetic relaxation (NMR) experiments to characterize the dynamic properties of hydrocarbons for a set of bitumen from 40 to 180 °C. The convergence towards universal theoretical modelling of NMR relaxation experiments gives a comprehensive understanding of hydrocarbon transport in these very weakly permeable samples. Moreover, a multivariate statistical analysis allows for correlating these NMR relaxation data for all bitumen samples to the main empirical parameters by qualifying the bitumen grading, such as the penetrability, softening and fragility points over a large range of temperatures. FINDINGS: These new experimental and theoretical multiscale approaches link hydrocarbon interfacial dynamics to the global characteristics of various bitumen types. This is critical for grading these universally encountered materials.

5.
J Colloid Interface Sci ; 581(Pt B): 644-655, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814188

RESUMO

HYPOTHESIS: The objective is to elucidate the multiscale dynamics of water within natural mixtures of minerals, green earth pigments that are mainly composed of phyllosilicates containing large amount of iron. In particular, the interaction of water with the different kinds of surfaces has to be probed. One issue is to examine the influence of surface type, basal or edge, on the dispersion quality. EXPERIMENT: The study was carried out using 1H variable field NMR relaxometry on various green earth pigment dispersions and concentrations. To analyse the data, a new analytical model was developed for natural phyllosilicates containing large amount of paramagnetic centres. FINDING: The proposed theoretical framework is able to fit the experimental data for various samples using few parameters. It allows to determining water diffusion and residence times in complex phyllosilicate dispersions. Furthermore, it makes it possible to differentiate the contribution of the basal and edge surfaces and their respective surface area in interaction with water. Moreover, NMR relaxation profile reveals to be highly sensitive to the structural aspect of the phyllosilicates and to the accessibility of water to iron, hence allowing to discriminate clearly between two very similar phyllosilicates (glauconite and celadonite) that are difficult to distinguish by standard structural methods.

6.
Data Brief ; 32: 106270, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32964083

RESUMO

The data presented here are related to the research paper entitled "Green Earth pigments dispersions: water dynamics at the interfaces". The nuclear magnetic resonance (NMR) relaxometry data are provided for various aqueous Green Earth (GE) pigments dispersions with volume fraction spanning approximately from 0.1 to 0.5. For two of them (Cyprus GE and Bohemian GE), the NMR relaxation profiles from 10 kHz to 30 MHz (1H frequency) is given for several temperatures spanning from 293 to 318K. In addition, the X-ray diffraction pattern is provided for France GE (Kremer pigments) for the identification of the main mineral component. The nitrogen gas isotherms are provided for Cyprus GE and Bohemian GE.

7.
Phys Chem Chem Phys ; 20(48): 30340-30350, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30488933

RESUMO

Ion-specific effects at the protein surface are investigated here in light of the changes they infer to surface water dynamics, as observed by 1H NMR relaxation (at 20 MHz). Two well-known proteins, hen egg-white lysozyme (LZM) and bovine serum albumin (BSA), show qualitatively opposite trends in the transverse relaxation rate, R2(1H), along a series of different monovalent salt anions in the solution. Presence of salt ions increases R2(1H) in the case of lysozyme and diminishes it in the case of BSA. The effect magnifies for larger and more polarizable ions. The same contrasting effect between the two proteins is observed for protein-solvent proton exchange. This hints at subtle effects ion-binding might have on the accessibility of water surface sites on the protein. We suggest that the combination of the density of surface charge residues and surface roughness, at the atomic scale, dictates the response to the presence of salt ions and is proper to each protein. Further, a dramatic increase in R2(1H) is found to correlate closely with the formation of protein aggregates. The same ordering of salts in their ability to aggregate lysozyme, as seen previously by cloud point measurements, is reproduced here by R2(1H). 1H NMR relaxation data is supplemented by 35Cl and 14N NMR relaxation for selected salt ions to probe the ion-binding itself.


Assuntos
Muramidase/química , Soroalbumina Bovina/química , Soluções/química , Água/química , Animais , Ânions , Bovinos , Galinhas , Difusão , Multimerização Proteica , Espectroscopia de Prótons por Ressonância Magnética , Prótons
8.
Prog Nucl Magn Reson Spectrosc ; 104: 12-55, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29405980

RESUMO

The nuclear magnetic relaxation dispersion (NMRD) technique consists of measurement of the magnetic-field dependence of the longitudinal nuclear-spin-lattice relaxation rate 1/T1. Usually, the acquisition of the NMRD profiles is made using a fast field cycling (FFC) NMR technique that varies the magnetic field and explores a very large range of Larmor frequencies (10 kHz < ω0/(2π) <40 MHz). This allows extensive explorations of the fluctuations to which nuclear spin relaxation is sensitive. The FFC technique thus offers opportunities on multiple scales of both time and distance for characterizing the molecular dynamics and transport properties of complex liquids in bulk or embedded in confined environments. This review presents the principles, theories and applications of NMRD for characterizing fundamental properties such as surface correlation times, diffusion coefficients and dynamical surface affinity (NMR wettability) for various confined liquids. The basic longitudinal and transverse relaxation equations are outlined for bulk liquids. The nuclear relaxation of a liquid confined in pores is considered in detail in order to find the biphasic fast exchange relations for a liquid at proximity of a solid surface. The physical-chemistry of liquids at solid surfaces induces striking differences between NMRD profiles of aprotic and protic (water) liquids embedded in calibrated porous disordered materials. A particular emphasis of this review concerns the extension of FFC NMR relaxation to industrial applications. For instance, it is shown that the FFC technique is sufficiently rapid for following the progressive setting of cement-based materials (plasters, cement pastes, concretes). The technique also allows studies of the dynamics of hydrocarbons in proximity of asphaltene nano-aggregates and macro-aggregates in heavy crude oils as a function of the concentration of asphaltenes. It also gives new information on the wettability of petroleum fluids (brine and oil) embedded in shale oil rocks. It is useful for understanding the relations and correlations between NMR relaxation times T1 and T2, diffusion coefficients D, and viscosity η of heavy crude oils. This is of particular importance for interpreting T1, T2, 2D T1-T2 and D-T2 correlation spectra that could be obtained down-hole, thus giving a valuable tool for investigating in situ the molecular dynamics of petroleum fluids. Another domain of interest concerns biological applications. This is of particular importance for studying the complex dynamical spectrum of a folded polymeric structure that may span many decades in frequency or time. A direct NMRD characterization of water diffusional dynamics is presented at the protein interface. NMR experiments using a shuttle technique give results well above the frequency range accessible via the FFC technique; examples of this show protein dynamics over a range from fast and localized motions to slow and delocalized collective motions involving the whole protein. This review ends by an interpretation of the origin of the proton magnetic field dependence of T1 for different biological tissues of animals; this includes a proposal for interpreting in vivo MRI data from human brain at variable magnetic fields, where the FFC relaxation analysis suggests that brain white-matter is distinct from grey-matter, in agreement with diffusion-weighted MRI imaging.

9.
J Phys Chem B ; 120(24): 5581-9, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27254797

RESUMO

We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale.

10.
Magn Reson Chem ; 54(5): 365-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27062147

RESUMO

Many soil functions depend on the interaction of water with soil. The affinity of water for soils can be altered by applying soil amendments like stone meal, manure, or biochar (a carbonaceous material obtained by pyrolysis of biomasses). In fact, the addition of hydrophobic biochar to soil may increase soil repellency, reduce water-adsorbing capacity, inhibit microbial activity, alter soil filter, buffer, storage, and transformation functions. For this reason, it is of paramount importance to monitor water affinity for biochar surface (also referred to as 'wettability') in order to better address its applications in soil systems. In this study, we propose the use of fast field cycling NMR relaxometry technique with the application of a new mathematical model for data interpretation, as a valid alternative to the traditional contact angle (CA) measurements for biochar wettability evaluation. Either NMR or CA results revealed the same wettability trend for the biochars studied here. The advantage of NMR relaxometry over CA measurements lies in the possibility to obtain at the microscopic level a variety of different information in only one shot. In fact, while CA provides only wettability evaluation, NMR relaxometry also allows achievement of the mechanisms for water molecular dynamics on biochar surface, thereby leading to the possibility to understand better, in future research, the role of biochar in increasing soil quality and plant nutrition.


Assuntos
Carvão Vegetal/química , Água/química , Espectroscopia de Prótons por Ressonância Magnética , Propriedades de Superfície , Molhabilidade
11.
J Phys Chem Lett ; 7(3): 393-8, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26751162

RESUMO

We show that nuclear magnetic relaxation experiments at variable magnetic fields (NMRD) provide noninvasive means for probing the spatial dependence of liquid diffusion close to solid interfaces. These experiments performed on samples of cylindrical and spherical nanopore geometries demonstrate that the average diffusion coefficient parallel to the interface is proportional to the pore radii in different dynamics regimes. A master curve method allows extraction of gradients of diffusion coefficients in proximity of the pore surfaces, indicative of the efficiency of coupling between liquid layers. Due to their selectivity in frequency, NMRD experiments are able to differentiate the different water dynamical events induced by heterogeneous surfaces or composed dynamical processes. This analysis relevant in physical and biological confinements highlights the interplay between the molecular and continuous description of fluid dynamics near interfaces.

12.
Magn Reson Chem ; 54(6): 502-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855084

RESUMO

The field cycling NMR relaxometry method (also known as fast field cycling (FFC) when instruments employing fast electrical switching of the magnetic field are used) allows determination of the spin-lattice relaxation time (T1 ) continuously over five decades of Larmor frequency. The method can be exploited to observe the T1 frequency dependence of protons, as well as any other NMR-sensitive nuclei, such as (2) H, (13) C, (31) P, and (19) F in a wide range of substances and materials. The information obtained is directly correlated with the physical/chemical properties of the compound and can be represented as a 'nuclear magnetic resonance dispersion' curve. We present some recent academic and industrial applications showing the relevance of exploiting FFC NMR relaxometry in complex materials to study the molecular dynamics or, simply, for fingerprinting or quality control purposes. The basic nuclear magnetic resonance dispersion features are outlined in representative examples of magnetic resonance imaging (MRI) contrast agents, porous media, proteins, and food stuffs. We will focus on the new directions and perspectives for the FFC technique. For instance, the introduction of the latest Wide Bore FFC NMR relaxometers allows probing, for the first time, of the dynamics of confined surface water contained in the macro-pores of carbonate rock cores. We also evidence the use of the latest field cycling technology with a new cryogen-free variable-field electromagnet, which enhances the range of available frequencies in the 2D T1 -T2 correlation spectrum for separating oil and water in crude oil. Copyright © 2015 John Wiley & Sons, Ltd.

13.
J Phys Chem B ; 117(41): 12475-8, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24059874

RESUMO

The residual water-proton magnetic relaxation dispersion profile obtained from suspensions of phospholipid vesicles in deuterium oxide was found to be a logarithmic function of the proton Larmor frequency at high magnetic field strengths, and independent of Larmor frequency at low magnetic field strengths. The residual proton relaxation is caused by dipole-dipole coupling between the residual water proton in otherwise deuterated water and the phospholipid protons. The logarithmic dependence on magnetic field strength is the signature of water-proton diffusive exploration on the interface that is approximately two-dimensionally constrained. Application of relaxation theory for two-dimensional diffusion to the spin-lattice relaxation data yields a translational correlation time of approximately 70 ps for water diffusing in the interface of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles.

14.
J Phys Chem B ; 117(23): 7002-14, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23687962

RESUMO

We propose using a set of noninvasive multiscale NMR techniques for probing the structure and dynamics of bulk and confined crude oils with and without asphaltene. High-field 1D (1)H and (13)C NMR spectroscopies evidence the proton species and the amount of asphaltene and give an average chain length for the hydrocarbon aliphatic chains. Two-dimensional (1)H diffusion-ordered NMR spectroscopy (DOSY) spectra allow us to identify two populations of hydrocarbons characterized by two distributions of translational diffusion coefficients in the presence of asphaltene and a single one without asphaltene. A detailed analysis of the distributions of longitudinal, T1, relaxation times measured at different magnetic fields is proposed in terms of highly skewed bimodal (or monomodal) log-normal distributions, confirming the two environments in the presence of asphaltene and a single one without asphaltene. We show that these distributions are similar to the gas and gel permeation chromatography distributions, thus showing a connection of the hydrocarbon dynamics with their chain lengths. The remarkable observed features of the nuclear magnetic relaxation dispersion (NMRD) profiles of <1/T1> for bulk and confined crude oils with and without asphaltene are interpreted with an original relaxation model of intermittent surface dynamics of proton species at the proximity of asphaltene nanoaggregates and bulk dynamics in between clusters of these nanoaggregates. This allows us to probe the 2D translational diffusion correlation time and the time of residence of hydrocarbons in the proximity of the asphaltene nanoaggregates. Provided that the diffusion of the hydrocarbons close to the asphaltene nanoaggregates is three times smaller than the bulk diffusion, as the DOSY experiments show, this time of residence gives an average radius of exploration for the 2D hydrocarbon diffusion, r2D ≈ 3.9 nm, of the same order of magnitude as the aggregate sizes found by J. Eyssautier with SAXS and SANS in asphaltene solutions and by O. C. Mullins with the observation of gravitational gradients of asphaltenes in oilfield reservoirs.

15.
Magn Reson Med ; 68(1): 272-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22144333

RESUMO

The magnetic field dependence of the composite (1)H(2)O nuclear magnetic resonance signal T(1) was measured for excised samples of rat liver, muscle, and kidney over the field range from 0.7 to 7 T (35-300 MHz) with a nuclear magnetic resonance spectrometer using sample-shuttle methods. Based on extensive measurements on simpler component systems, the magnetic field dependence of T(1) of all tissues studied are readily fitted at Larmor frequencies above 1 MHz with a simple relaxation equation consisting of three contributions: a power law, A*ω(-0.60) related to the interaction of water with long-lived-protein binding sites, a logarithmic term B*τ(d) *log(1+1/(ωτ(d))(2)) related to water diffusion at macromolecular interfacial regions, and a constant term associated with the high frequency limit of water-spin-lattice relaxation. The parameters A and B include the concentration and surface area dependences respectively. The logarithmic diffusion term becomes significant at high magnetic fields and is consistent with rapid translational dynamics at macromolecular surfaces. The data are fitted well with translational correlation times of approximately 15 ps for human brain white matter, but with a B value three times larger than gray matter tissues. This analysis suggests that the water-surface translational correlation time is approximately three times longer than in gray matter.


Assuntos
Água Corporal/química , Água Corporal/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Água Corporal/efeitos da radiação , Relação Dose-Resposta à Radiação , Campos Magnéticos , Masculino , Modelos Animais , Especificidade de Órgãos , Doses de Radiação , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
16.
J Phys Chem B ; 115(44): 12845-58, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21932852

RESUMO

Immobilized proteins present a unique interface with water. The water translational diffusive motions affect the high-frequency dynamics and the nuclear spin-lattice relaxation as with all surfaces; however, rare binding sites for water in protein systems add very low-frequency components to the dynamics spectrum. Water binding sites in protein systems are not identical, thus distributions of free energies and consequent dynamics are expected. (2)H(2)O spin-lattice relaxation rate measurements as a function of magnetic field strength characterize the local rotational fluctuations for protein-bound water molecules. The measurements are sensitive to dynamics down to the kilohertz range. To account for the data, we show that the extreme-values statistics of rare events, i.e., water dynamics in rare binding sites, implies an exponential distribution of activation energies for the strongest binding events. In turn, for an activated dynamical process, the exponential energy distribution leads to a Pareto distribution for the reorientational correlation times and a power law in the Larmor frequency for the (2)H(2)O spin-lattice relaxation rate constants at low field strengths. The most strongly held water molecules escape from rare binding sites in times on the order of microseconds, which interrupts the intramolecular correlations and causes a plateau in the spin-lattice relaxation rate at very low magnetic field strengths. We examine the magnetic relaxation dispersion (MRD) data using two simple but related models: a protein-bound environment for water characterized by a single potential well and a protein-bound environment characterized by a double potential well where the potential functions for the local motions of the bound-state water are of different depth. This analysis is applied to D(2)O deuterium spin-lattice relaxation on cross-linked albumin and lysozyme, which is dominated by the intramolecular relaxation driven by the dynamical modulation of the nuclear electric quadrupole coupling. We also separate the intramolecular from the intermolecular contribution to water proton spin-lattice relaxation by isotope dilution and show that the intramolecular proton data map onto the deuterium relaxation by a scale factor implied by the relative strength of the quadrupole and dipolar couplings. The temperature and pH dependence of the magnetic relaxation dispersion are complex and accounted for by changing only the weighting factors in a superposition of contributions from single-well and double-well contributions. These experiments show that the reorientational dynamics spectrum for water, in and on a protein, is characterized by a strongly asymmetric distribution with a long-time tail that extends at least to microseconds.


Assuntos
Proteínas Imobilizadas/química , Muramidase/química , Soroalbumina Bovina/química , Água/química , Animais , Sítios de Ligação , Bovinos , Galinhas , Modelos Químicos , Modelos Estatísticos , Propriedades de Superfície , Termodinâmica
17.
J Magn Reson ; 208(2): 195-203, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21134772

RESUMO

The paramagnetic contributions to water-proton-spin-lattice relaxation rate constants in protein systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the dipolar coupling between water protons and the protein-bound nitroxide radical often appears to be larger than physically reasonable when the relaxation is assumed to be controlled by 3-dimensional diffusive processes in the vicinity of the spin label. We examine the effects of the surface in biasing the diffusive exploration of the radical region and derive a relaxation model that incorporates 2-dimensional dynamics at the interfacial layer. However, we find that the local 2-dimensional dynamics changes the shape of the relaxation dispersion profile but does not necessarily reproduce the low-field relaxation efficiency found by experiment. We examine the contributions of long-range dipolar couplings between the paramagnetic center and protein-bound-water molecules and find that the contributions from these several long range couplings may be competitive with translational contributions because the correlation time for global rotation of the protein is approximately 1000 times longer than that for the diffusive motion of water at the interfacial region. As a result the electron-proton dipolar coupling to rare protein-bound-water-molecule protons may be significant for protein systems that accommodate long-lived-water molecules. Although the estimate of local diffusion coefficients is not seriously compromised because it derives from the Larmor frequency dependence, these several contributions confound efforts to fit relaxation data quantitatively with unique models.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Proteínas/química , Prótons , Água/química , Algoritmos , Indicadores e Reagentes , Modelos Teóricos , Soluções , Propriedades de Superfície
18.
Biophys J ; 98(1): 138-46, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20085726

RESUMO

Rotational immobilization of proteins permits characterization of the internal peptide and water molecule dynamics by magnetic relaxation dispersion spectroscopy. Using different experimental approaches, we have extended measurements of the magnetic field dependence of the proton-spin-lattice-relaxation rate by one decade from 0.01 to 300 MHz for (1)H and showed that the underlying dynamics driving the protein (1)H spin-lattice relaxation is preserved over 4.5 decades in frequency. This extension is critical to understanding the role of (1)H(2)O in the total proton-spin-relaxation process. The fact that the protein-proton-relaxation-dispersion profile is a power law in frequency with constant coefficient and exponent over nearly 5 decades indicates that the characteristics of the native protein structural fluctuations that cause proton nuclear spin-lattice relaxation are remarkably constant over this wide frequency and length-scale interval. Comparison of protein-proton-spin-lattice-relaxation rate constants in protein gels equilibrated with (2)H(2)O rather than (1)H(2)O shows that water protons make an important contribution to the total spin-lattice relaxation in the middle of this frequency range for hydrated proteins because of water molecule dynamics in the time range of tens of ns. This water contribution is with the motion of relatively rare, long-lived, and perhaps buried water molecules constrained by the confinement. The presence of water molecule reorientational dynamics in the tens of ns range that are sufficient to affect the spin-lattice relaxation driven by (1)H dipole-dipole fluctuations should make the local dielectric properties in the protein frequency dependent in a regime relevant to catalytically important kinetic barriers to conformational rearrangements.


Assuntos
Modelos Químicos , Proteínas/química , Água/química , Simulação por Computador , Soluções
19.
J Phys Chem B ; 113(40): 13347-56, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19754137

RESUMO

The dynamics of water are critically important to the energies of interaction between proteins and substrates and determine the efficiency of transport at the interface. The magnetic field dependence of the nuclear spin-lattice relaxation rate constant 1/T(1) of water protons provides a direct characterization of water diffusional dynamics at the protein interface. We find that the surface-average translational correlation time is 30-40 ps and the magnetic field dependence of the water proton 1/T(1) is characteristic of two-dimensional diffusion of water in the protein interfacial region. The reduced dimensionality substantially increases the intermolecular re-encounter probability and the efficiency of the surface exploration by the small molecule, water in this case. We propose a comprehensive theory of the translational effects of a small diffusing particle confined in the vicinity of a spherical macromolecule as a function of the relative size of the two particles. We show that the change in the apparent dimensionality of the diffusive exploration is a general result of the small diffusing particle encountering a much larger particle that presents a diffusion barrier. Examination of the effects of the size of the confinement relative to the macromolecule size reveals that the reduced dimensionality characterizing the small-molecule diffusion persists to remarkably small radius ratios. The experimental results on several different proteins in solution support the proposed theoretical model, which may be generalized to other small-particle-large-body systems like vesicles and micelles.


Assuntos
Proteínas/química , Soluções/química , Água/química , Difusão , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Modelos Teóricos , Prótons
20.
J Magn Reson ; 199(1): 68-74, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19394883

RESUMO

Spin-lattice relaxation rates of protein and water protons in dry and hydrated immobilized bovine serum albumin were measured in the range of (1)H Larmor frequency from 10 kHz to 30 MHz at temperatures from 154 to 302 K. The water proton spin-lattice relaxation reports on that of protein protons, which causes the characteristic power law dependence on the magnetic field strength. Isotope substitution of deuterium for hydrogen in water and studies at different temperatures expose three classes of water molecule dynamics that contribute to the spin-lattice relaxation dispersion profile. At 185 K, a water (1)H relaxation contribution derives from reorientation of protein-bound molecules that are dynamically uncoupled from the protein backbone and is characterized by a Lorentzian function. Bound-water-molecule motions that can be dynamically uncoupled or coupled to the protein fluctuations make dominant contributions at higher temperatures as well. Surface water translational diffusion that is magnetically two-dimensional makes relaxation contributions at frequencies above 10 MHz. It is shown using isotope substitution that the exponent of the power law of the water signal in hydrated immobilized protein systems is the same as that for protons in lyophilized proteins over four orders of magnitude in the Larmor frequency, which implies that changes in the protein structure associated with hydration do not affect the (1)H spin relaxation.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Proteínas/análise , Proteínas/química , Água/análise , Água/química , Simulação por Computador , Ligação Proteica , Prótons , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...