Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732039

RESUMO

Hesperidin is a highly bioactive natural flavonoid whose role in ecological interactions is poorly known. In particular, the effects of hesperidin on herbivores are rarely reported. Flavonoids have been considered as prospective biopesticides; therefore, the aim of the present study was to examine the influence of hesperidin on the host plant selection behavior of three aphid (Hemiptera: Aphididae) species: Acyrthosiphon pisum Harrris, Rhopalosiphum padi (L.), and Myzus persicae (Sulz.). The aphid host plants were treated with 0.1% and 0.5% ethanolic solutions of hesperidin. Aphid probing behavior in the no-choice experiment was monitored using electropenetrography and aphid settling on plants in the choice experiment was recorded. The results demonstrated that hesperidin can be applied as a pre-ingestive, ingestive, and post-ingestive deterrent against A. pisum, as an ingestive deterrent against R. padi, and as a post-ingestive deterrent against M. persicae using the relatively low 0.1% concentration. While in A. pisum the deterrent effects of hesperidin were manifested as early as during aphid probing in peripheral plant tissues, in M. persicae, the avoidance of plants was probably the consequence of consuming the hesperidin-containing phloem sap.


Assuntos
Afídeos , Hesperidina , Afídeos/efeitos dos fármacos , Afídeos/fisiologia , Animais , Hesperidina/farmacologia , Hesperidina/química , Especificidade da Espécie , Comportamento Alimentar/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
2.
Insects ; 12(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34564246

RESUMO

Sitophilus granarius (L.) is considered to be one of the major pests causing damage to cereal grain stored in silos and granaries. Using traditional methods (synthetic insecticides, mechanical, or physical methods) to control this pest is either ineffective or dangerous to people and nature. It is, therefore, necessary to develop new cultivars of cereals that will be distinguished by a high natural tolerance of the foraging by S. granarius. The aim of this study is expressed in the set research hypothesis, stating that the number of offspring of the grain weevil on stored wheat kernels can depend on the content of fatty acids in the kernels. Thus, the qualitative and quantitative composition of fatty acids was determined in kernels of 10 winter wheat cultivars, and the abundance of the beetle's offspring generation of S. granarius that developed on the wheat grain, as well as the mass of produced dust and loss in the mass of wheat grain were determined. By applying statistical analyses (GLM, ANOVA, Pearson's linear correlation coefficient, and analysis of redundancy), the presence and character of the dependence between the determined content of fatty acids in wheat grain and the factors describing the development of S. granarius were established. The research results indicate that fatty acids from the groups C 18:1 and C 20:1 probably play an important role as substances stimulating the increase in the number of the tested pest progeny. In contrast, fatty acids C 15:0, C 16:1, and C 18:3, which were determined in large amounts in the grain of wheat cultivars Speedway, KWS Livius, and Julius, can reduce the number of offspring of pest insect.

3.
Insects ; 12(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34442322

RESUMO

Flavonoids detected in soybean Glycine max (L.) Merr. (Fabaceae) cause various alterations in the metabolism, behavior, and development of insect herbivores. The pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) poses potential threat to soybeans, but the effect of individual flavonoids on its feeding-associated behavior is relatively unknown. We monitored probing behavior (stylet penetration activities) of A. pisum on its preferred host plant, Pisum sativum L. untreated (control) and treated with 0.1% ethanolic solutions of flavonoids apigenin, daidzein, genistein, and kaempferol. We applied the electrical penetration graph (electropenetrography, EPG) technique, which visualizes the movements of aphid stylets within plant tissues. None of the applied flavonoids affected the propensity to probe the plants by A. pisum. However, apigenin enhanced the duration of probes in non-phloem tissues, which caused an increase in the frequency and duration of stylet mechanics derailment and xylem sap ingestion but limited the ingestion of phloem sap. Daidzein caused a delay in reaching phloem vessels and limited sap ingestion. Kaempferol caused a reduction in the frequency and duration of the phloem phase. Genistein did not affect aphid probing behavior. Our findings provide information for selective breeding programs of resistant plant cultivars to A. pisum.

4.
Molecules ; 26(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199264

RESUMO

Rutin and its aglycone quercetin occur in the fruits, leaves, seeds, and grains of many plant species and are involved in plant herbivore interactions. We studied the effect of the exogenous application of rutin and quercetin on the probing behavior (= stylet penetration activities in plant tissues) of Acyrthosiphon pisum on Pisum sativum, Myzus persicae on Brassica rapa ssp. pekinensis, and Rhopalosiphum padi on Avena sativa using the electrical penetration graph technique (EPG = electropenetrography). The reaction of aphids to quercetin and rutin and the potency of the effect depended on aphid species, the flavonol, and flavonol concentration. Quercetin promoted probing activities of A. pisum within non-phloem and phloem tissues, which was demonstrated in the longer duration of probes and a trend toward longer duration of sap ingestion, respectively. M. persicae reached phloem in a shorter time on quercetin-treated B. rapa than on the control. Rutin caused a delay in reaching sieve elements by A. pisum and deterred probing activities of M. persicae within non-phloem tissues. Probing of R. padi was not affected by quercetin or rutin. The potency of behavioral effects increased as the applied concentrations of flavonols increased. The prospects of using quercetin and rutin in plant protection are discussed.


Assuntos
Afídeos/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Floema/fisiologia , Folhas de Planta/metabolismo , Quercetina/farmacologia , Rutina/farmacologia , Animais , Antioxidantes/farmacologia , Afídeos/fisiologia , Herbivoria
5.
Sci Rep ; 11(1): 15289, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315988

RESUMO

To reveal the antixenosis potential against the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) we analyzed the pea aphid survival and probing behavior, and the quantitative and qualitative variation of flavonoids in the leaves of selected soybean Glycine max (L.) Merr (Fabaceae) cultivars 'Aldana', 'Annushka', 'Augusta', 'Madlen', 'Mavka', 'Simona', 'Violetta', and 'Viorica'. Aphid survival was drastically impeded on all cultivars. The electronic monitoring of aphid probing using the Electrical Penetration Graph (EPG) technique revealed that on all soybean cultivars, A. pisum readily probed into leaf tissues but the probes were usually terminated before reaching vascular tissues, which demonstrates the activity of antixenosis mechanisms in peripheral tissues epidermis and/or mesophyll in soybean leaves. The potency of antixenosis factors differed among soybean cultivars, which was reflected in differences in aphid survival and frequency and duration of phloem sap ingestion. Seven flavonoids were found: apigenin, daidzein, genistein, glycitein, isorhamnetin, kaempferol, and rutin, which occurred in different amount and proportion in individual cultivars. The content of apigenin and genistein in all soybean cultivars studied probably made them relatively unacceptable to A. pisum. Kaempferol in 'Aldana' might be responsible for the observed strong antixenosis resistance of this cultivar to A. pisum. The results of our survey provide the first detailed data that can be used for future studies.

6.
Molecules ; 25(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668610

RESUMO

Substances that alter insect behavior have attracted a lot of attention as potential crop protection agents. Naringenin (5,7,4'-trihydroxyflavanone) is a naturally occurring bioactive flavanone. We evaluated the influence of naringenin on aphid activities during individual phases of probing and feeding and the effect of structural modifications of naringenin on its activity towards aphids. We monitored the probing behavior of Myzus persicae (Sulz.) (Hemiptera: Aphididae) using the Electrical Penetration Graph (EPG) technique. The chemical modifications were the substitution of hydrogen atoms with methyl, ethyl or pentyl groups and the replacement of the carbonyl group in naringenin and its derivatives with an oxime moiety. Depending on the substituents, the activity of naringenin-derived compounds varied in potency and mode of action. Naringenin was an attractant of moderate activity, which enhanced sap ingestion. The naringenin derivative with two methyl groups-7,4'-di-O-methylnaringenin-was a deterrent, which hindered aphid probing in non-phloem tissues. Naringenin oxime derivatives with methyl substituents-7,4'-di-O-methylnaringenin oxime, 7-O-methylnaringenin oxime, and 5,7,4'-tri-O-methylnaringenin oxime-and the derivative with a pentyl substituent-7-O-pentylnaringenin oxime-were strong attractants which stimulated aphid probing in non-phloem tissues and the ingestion of phloem sap.


Assuntos
Afídeos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Flavanonas , Inseticidas , Animais , Flavanonas/química , Flavanonas/toxicidade , Inseticidas/química , Inseticidas/toxicidade , Estrutura Molecular , Relação Estrutura-Atividade
7.
J Econ Entomol ; 112(1): 465-474, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30395246

RESUMO

The aim of the study was to explore the acceptability of 14 species, varieties, and cultivars of grain legumes (Fabales: Fabaceae) to the pea aphid, by investigating the aphid probing behavior using the electrical penetration graph (EPG) technique. Phaseolus coccineus L. 'Felicia', Pisum sativum L. 'Medal', P. sativum arvense (L.) Poir. 'Fidelia' and 'Hubal', and Vicia faba L. 'Dragon' are highly susceptible, with no antixenosis potential against Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae): aphid probing and feeding activities were not impeded. Lathyrus sativus L. 'Derek', Lupinus luteus L.'Perkoz', Vicia faba minor Beck. 'Sonet' are moderately susceptible to A. pisum infestation, with minor antixenosis potential and with antixenosis factors in non-phloem tissues. Aphids on these plants had difficulty to attain the phloem phase and phloem sap ingestion phase. During phloem phase, ingestion lasted for long periods of time. Lens culinaris Medik. 'Green' and Phaseolus vulgaris L. 'Boruta' are moderately susceptible to A. pisum infestation, with minor antixenosis potential and with antixenosis factors in the phloem. Behavior of aphids during pre-phloem phase was similar to that on highly susceptible plants but individual phloem phases and sap ingestion phases were short and contained a high proportion of watery salivation. Glycine max (L.) Merr. 'Aldana', L. angustifolius L. 'Boruta', P. coccineus 'Rothbluende', and P. vulgaris 'Mamut' are highly resistant to A. pisum infestation, with high antixenosis potential and with strong antixenosis factors in non-phloem tissues: aphid probing time was shortened, non-probing intervals between probes were long, and the success rate in reaching phloem phase was very low or none.


Assuntos
Afídeos , Fabaceae , Herbivoria , Animais , Feminino , Floema , Especificidade da Espécie
8.
J Pest Sci (2004) ; 88(3): 507-516, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300715

RESUMO

ß-Damascone appeared a weak attractant close to not active to Myzus persicae, but modifications of its structure caused the avoidance of treated leaves by aphids during settling and reluctance to probe in simple choice- and no-choice experiments in previous studies. Here, the electrical penetration graph (EPG) technique, which allows monitoring of aphid probing within plant tissues, was applied to explore the biological background and localisation in plant tissues of the deterrent activities of ß-damascone and its analogues. Activity of ß-damascone and ß-damascone-derived compounds depended on their substituents, which was manifested in the variation in the potency of the behavioural effect and differences in aphid probing phases that were affected. ß-Damascone appeared a behaviourally inactive compound. The moderately active ß-damascone ester affected aphid activities only during the phloem phase. The highly active deterrents-dihydro-ß-damascol, ß-damascone acetate, δ-bromo-γ-lactone, and unsaturated γ-lactone-affected pre-phloem and phloem aphid probing activities. The most effective structural modification that evoked the strongest negative response from M. persicae was the transformation of ß-damascone into δ-bromo-γ-lactone. The behavioural effect of this transformation was demonstrated in frequent interruption of probing in peripheral tissues, which caused repeated failures in finding sieve elements, and reduction in the ingestion time during the phloem phase in favour of watery salivation. The inhibition of aphid probing at both the pre-phloem and phloem levels reveals the passage of the compounds studied through the plant surface and their distribution within plant tissues in a systemic way, which may reduce the risk of the transmission of non-persistent and persistent viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...