Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 52(6): 1665-1677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459196

RESUMO

Prosthetic heart valve (PHV) replacement has increased the survival rate and quality of life for heart valve-diseased patients. However, PHV thrombosis remains a critical problem associated with these procedures. To better understand the PHV flow-related thrombosis problem, appropriate experimental models need to be developed. In this study, we present an in vitro fibrin clot model that mimics clot accumulation in PHVs under relevant hydrodynamic conditions while allowing real-time imaging. We created 3D-printed mechanical aortic valve models that were inserted into a transparent glass aorta model and connected to a system that simulates human aortic flow pulse and pressures. Thrombin was gradually injected into a circulating fibrinogen solution to induce fibrin clot formation, and clot accumulation was quantified via image analysis. The results of valves positioned in a normal versus a tilted configuration showed that clot accumulation correlated with the local flow features and was mainly present in areas of low shear and high residence time, where recirculating flows are dominant, as supported by computational fluid dynamic simulations. Overall, our work suggests that the developed method may provide data on flow-related clot accumulation in PHVs and may contribute to exploring new approaches and valve designs to reduce valve thrombosis.


Assuntos
Fibrina , Próteses Valvulares Cardíacas , Trombina , Trombose , Humanos , Fibrina/metabolismo , Modelos Cardiovasculares , Perfusão , Valva Aórtica/cirurgia
2.
Heliyon ; 10(5): e26550, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463800

RESUMO

Microfluidic blood flow models have been instrumental to study the functions of blood platelets in hemostasis and arterial thrombosis. However, they are not suited to investigate the interactions of platelets with the foreign surfaces of medical devices such as stents, mainly because of the dimensions and geometry of the microfluidic channels. Indeed, the channels of microfluidic chips are usually rectangular and rarely exceed 50 to 100 µm in height, impairing the insertion of clinically used stents. To fill this gap, we have developed an original macrofluidic flow system, which precisely reproduces the size and geometry of human vessels and therefore represents a biomimetic perfectly suited to insert a clinical stent and study its interplay with blood cells. The system is a circular closed loop incorporating a macrofluidic flow chamber made of silicone elastomer, which can mimic the exact dimensions of any human vessel, including the coronary, carotid or femoral artery. These flow chambers allow the perfect insertion of stents as they are implanted in patients. Perfusion of whole blood anticoagulated with hirudin through the device at relevant flow rates allows one to observe the specific accumulation of fluorescently labeled platelets on the stent surface using video-microscopy. Scanning electron microscopy revealed the formation of very large thrombi composed of tightly packed activated platelets on the stents.

3.
Eur J Pharm Sci ; 181: 106359, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521723

RESUMO

The applicability of inhalation therapy to some severe pulmonary conditions is often compromised by limited delivery rates (i.e. total dose) and low deposition efficiencies in the respiratory tract, most notably in the deep pulmonary acinar airways. To circumvent such limitations, alternative therapeutic techniques have relied for instance on intratracheal liquid instillations for the delivery of high-dose therapies. Yet, a longstanding mechanistic challenge with such latter methods lies in delivering solutions homogeneously across the whole lungs, despite an inherent tendency of non-uniform spreading driven mainly by gravitational effects. Here, we hypothesize that the pulmonary distribution of instilled liquid solutions can be meaningfully improved by foaming the solution prior to its instillation, owing to the increased volume and the reduced gravitational bias of foams. As a proof-of-concept, we show in excised adult porcine lungs that liquid foams can lead to significant improvement in homogenous pulmonary distributions compared with traditional liquid instillations. Our ex-vivo results suggest that liquid foams can potentially offer an attractive novel pulmonary delivery modality with applications for high-dose regimens of respiratory therapeutics.


Assuntos
Pulmão , Suínos , Animais
4.
Acta Biomater ; 163: 182-193, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35597433

RESUMO

Vascularization of 3D engineered tissues poses a great challenge in the field of tissue engineering. One promising approach for vascularizing engineered tissue is cocultivation with endothelial cells (ECs), which spontaneously self-assemble into a natural capillary network in the presence of supportive cells. However, the ECs do not self-assemble according to physiological hierarchy which is required to support blood supply. This work describes the design and fabrication of an AngioTube, a biodegradable engineered macro-vessel surrounded by cylindrical micro-channel array, which is designed to support physiological flow distribution and enable the integration with living capillaries. The well-defined geometry of the engineered micro-channels guides endothelial cells to form patent micro-vessels which sprouted in accordance with the channel orientation. Three different in-vitro models were used to demonstrate anastomosis of these engineered micro-vessels with self-assembled vascular networks. Finally, in-vivo functionality was demonstrated by direct anastomosis with the femoral artery in a rat hindlimb model. This unique approach proposes a new micro-fabrication strategy which introduces uncompromised micro-fluidic device geometrical accuracy at the tissue-scale level. STATEMENT OF SIGNIFICANCE: This study proposes a micro-fabrication strategy suitable for processing real-scale cylindrical implants with very high accuracy, which will enable translation of the high-resolution geometry of micro-fluidic devices to clinically relevant implants containing functional multi-scale vascular networks. Moreover, this approach promises to advance the field of tissue engineering by opening new opportunities to explore the impact of well controlled and uncompromised 3D micro-geometry on cellular behavior.


Assuntos
Células Endoteliais , Engenharia Tecidual , Ratos , Animais , Células Endoteliais/fisiologia , Artéria Femoral , Morfogênese , Anastomose Cirúrgica , Alicerces Teciduais , Neovascularização Fisiológica
5.
J Biomech ; 137: 111082, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35489235

RESUMO

The journey of vascular targeted carriers (VTC) in the circulatory system is highly intricate and includes navigation through different vessel structures, such as the vast pulmonary capillary network (PCN) in the lungs where particles can get entrapped and lead to blockage. Here, we leverage microfluidic PCN models to explore, for the first time, micro-particle capillary entrapment, in a well-controlled biophysical environment mimicking human physiological hemodynamics at true scale. This in vitro strategy mimics the challenges of vascular carrier transport during their journey in the smallest capillaries of the body (∼5 µm). Specifically, we explore in the PCN model entrapment dynamics of spherical micro-particles of different diameters (i.e. 3, 4 and 4.5 µm) at different concentrations, comparing their motion in cell-free buffer to that in the presence of red blood cells (RBCs). Notably, while 3 µm particles exhibit undisturbed transport in all of the examined concentrations, both in cell-free buffer and in the presence of RBCs, particles of 4 and 4.5 µm exhibit a concentration-dependent transport where the presence of RBCs leads in fact to reduced entrapment. Our experiments suggest that collisions of micro-particles with RBCs can facilitate their navigability, allowing for carrier transport that would lead otherwise to rapid entrapment in a cell-free environment. Altogether, the proposed preclinical in vitro assays offer rapid screening opportunities for design optimization of VTC transport in capillary networks.


Assuntos
Microfluídica , Humanos , Capilares/fisiologia , Eritrócitos/fisiologia , Hemodinâmica
6.
Front Physiol ; 13: 853317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350687

RESUMO

The past decade has witnessed tremendous endeavors to deliver novel preclinical in vitro lung models for pulmonary research endpoints, including foremost with the advent of organ- and lung-on-chips. With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups and physiology, are acknowledged to play an important role in the progression of the disease from the initial onset of infection. In the present Methods article, we designed and fabricated to the best of our knowledge the first multi-compartment human airway-on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung crosstalk for viral infection pathways. Combining microfabrication and 3D printing techniques, our platform mimics key elements of the respiratory system spanning (i) nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk between the three components was exemplified in various assays. First, viral-load (including SARS-CoV-2) injected into the apical partition of the nasal compartment was detected in distal bronchial and acinar components upon applying physiological airflow across the connected compartment models. Secondly, nebulized viral-like dsRNA, poly I:C aerosols were administered to the nasal apical compartment, transmitted to downstream compartments via respiratory airflows and leading to an elevation in inflammatory cytokine levels secreted by distinct epithelial cells in each respective compartment. Overall, our assays establish an in vitro methodology that supports the hypothesis for viral-laden airflow mediated transmission through the respiratory system cellular landscape. With a keen eye for broader end user applications, we share detailed methodologies for fabricating, assembling, calibrating, and using our multi-compartment platform, including open-source fabrication files. Our platform serves as an early proof-of-concept that can be readily designed and adapted to specific preclinical pulmonary research endpoints.

7.
Bioeng Transl Med ; 7(1): e10251, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079628

RESUMO

Localized delivery of diagnostic/therapeutic agents to cerebral aneurysms, lesions in brain arteries, may offer a new treatment paradigm. Since aneurysm rupture leading to subarachnoid hemorrhage is a devastating medical emergency with high mortality, the ability to noninvasively diagnose high-risk aneurysms is of paramount importance. Moreover, treatment of unruptured aneurysms with invasive surgery or minimally invasive neurointerventional surgery poses relatively high risk and there is presently no medical treatment of aneurysms. Here, leveraging the endogenous biophysical properties of brain aneurysms, we develop particulate carriers designed to localize in aneurysm low-shear flows as well as to adhere to a diseased vessel wall, a known characteristic of high-risk aneurysms. We first show, in an in vitro model, flow guided targeting to aneurysms using micron-sized (2 µm) particles, that exhibited enhanced targeting (>7 folds) to the aneurysm cavity while smaller nanoparticles (200 nm) showed no preferable accumulation. We then functionalize the microparticles with glycoprotein VI (GPVI), the main platelet receptor for collagen under low-medium shear, and study their targeting in an in vitro reconstructed patient-specific aneurysm that contained a disrupted endothelium at the cavity. Results in this model showed that GPVI microparticles localize at the injured aneurysm an order of magnitude (>9 folds) more than control particles. Finally, effective targeting to aneurysm sites was also demonstrated in an in vivo rabbit aneurysm model with a disrupted endothelium. Altogether, the presented biophysical strategy for targeted delivery may offer new treatment opportunities for cerebral aneurysms.

8.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768908

RESUMO

Ischemic stroke is the most common type of stroke and thrombolytic therapy is the only approved treatment. However, current thrombolytic therapy with tissue plasminogen activator (tPA) is often hampered by the increased risk of hemorrhage. Plasmin, a direct fibrinolytic, has a significantly superior hemostatic safety profile; however, if injected intravenously it becomes rapidly inactivated by anti-plasmin. Nanoformulations have been shown to increase drug stability and half-life and hence could be applied to increase the plasmin therapeutic efficacy. Here in this paper, we report a novel heparin and arginine-based plasmin nanoformulation that exhibits increased plasmin stability and efficacy. In vitro studies revealed significant plasmin stability in the presence of anti-plasmin and efficient fibrinolytic activity. In addition, these particles showed no significant toxicity or oxidative stress effects in human brain microvascular endothelial cells, and no significant blood brain barrier permeability. Further, in a mouse photothrombotic stroke model, plasmin nanoparticles exhibited significant efficacy in reducing stroke volume without overt intracerebral hemorrhage (ICH) compared to free plasmin treatment. The study shows the potential of a plasmin nanoformulation in ischemic stroke therapy.


Assuntos
Arginina/química , Fibrinolisina/administração & dosagem , Heparina/química , AVC Isquêmico/terapia , Nanopartículas/administração & dosagem , Terapia Trombolítica/métodos , Animais , Barreira Hematoencefálica , Fibrinolisina/química , Fibrinolíticos/administração & dosagem , Fibrinolíticos/química , Humanos , Infarto da Artéria Cerebral Média/complicações , AVC Isquêmico/etiologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química
9.
Adv Mater ; 33(42): e2102661, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510579

RESUMO

Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel-like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel-like scaffolds and endothelial cells seeded in their lumen form native-like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites the bioprinted vasculature and endothelium to cooperatively create vessels, enabling tissue perfusion through the scaffold lumen. Using a cuffing microsurgery approach, the engineered tissue is directly anastomosed with a rat femoral artery, promoting a rich host vasculature within the implanted tissue. After two weeks in vivo, contrast microcomputer tomography imaging and lectin perfusion of explanted engineered tissues verify the host ingrowth vasculature's functionality. Furthermore, the hierarchical vessel network (VesselNet) supports in vitro functionality of cardiomyocytes. Finally, the proposed approach is expanded to mimic complex structures with native-like millimetric vessels. This work presents a novel strategy aiming to create fully-engineered patient-specific thick tissue flaps.


Assuntos
Materiais Biomiméticos/química , Bioimpressão/métodos , Engenharia Tecidual , Animais , Colágeno Tipo I/química , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Artéria Femoral/cirurgia , Humanos , Hidrogéis/química , Tinta , Masculino , Metacrilatos/química , Polímeros/química , Impressão Tridimensional , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/metabolismo , Alicerces Teciduais/química
10.
J Thromb Haemost ; 19(2): 582-587, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34396675

RESUMO

In vitro flow-based assays are widely used to investigate the role of platelets and coagulation in hemostasis and thrombosis. Their main advantage over other assays relies on the fact that they integrate blood flow that regulates many aspects of platelet function, including adhesion, activation, and aggregation. Blood flow is also central in the regulation of coagulation through its ability to modulate the local concentrations of coagulation factors within and around thrombi. The most broadly used assay to study thrombus formation consists in perfusing whole blood over immobilized fibrillar collagen through a single channel, which helps to reproduce thrombus formation as it occurs in vivo after vascular injury, with platelets adhering, becoming activated, and forming a mural thrombus. This process can also be studied under conditions of thrombin generation, notably by recalcifying blood collected in sodium citrate. In this manuscript, we briefly discuss the advantages and limits of this broadly used "in vitro thrombus formation model." The main emphasis is on the description of the most recent developments regarding design of new flow models and new techniques, and how these may advance the landscape of in vitro studies into the formation of physiological or pathophysiological thrombi. Challenges linked to mimicking the formation of a hemostatic plug in a healthy vessel or a thrombus in diseased arteries and the complexity of reproducing the various aspects of venous thrombosis are discussed. Future directions are proposed to improve the physiological or pathophysiological relevance of current flow-based assays.


Assuntos
Hemostasia , Trombose , Coagulação Sanguínea , Plaquetas , Humanos , Testes de Função Plaquetária
11.
J Thromb Haemost ; 19(2): 588-595, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34396692

RESUMO

Hemodynamics play a central role in hemostasis and thrombosis by affecting all aspects linked to platelet functions and coagulation. In vitro flow devices are extensively used in basic research, pharmacological studies, antiplatelet agent screening, and development of diagnostic tools. Because hemodynamic conditions vary tremendously throughout the vascular tree and among different (patho)physiological processes, it is important to use flow conditions based on relevant biorheological reference ranges. Surprisingly, it is particularly difficult to find a concise overview of relevant hemodynamic parameters in various human and mouse vessels. To our knowledge, this is the first time an inventory of flow conditions in healthy, non-diseased, human and mouse vessels has been created. The objective of providing such a repertoire is to aid researchers in the field of hemostasis and thrombosis in choosing rheological conditions relevant in in vitro flow experiments and to promote harmonization of flow-based assays to facilitate comparative evaluations between studies. With reference to the human, we discuss relevant similarities and discrepancies in wall shear rates in the mouse, which are typically one order of magnitude greater in agreement with allometric scaling laws between species. Importantly, we bring the attention of the researchers to the fact that the relevant range of average wall shear rates in human arteries where clinically relevant arterial thrombosis occurs may fall as low as 100 to 200 s-1, thus significantly overlapping with what are considered "venous" shear rates. The same range for the murine arteries used for arterial thrombosis models may significantly exceed 1000 s-1 reaching values considered to be "pathological."


Assuntos
Artérias , Hemodinâmica , Animais , Comunicação , Hemostasia , Humanos , Camundongos , Modelos Cardiovasculares , Padrões de Referência , Estresse Mecânico
12.
Adv Drug Deliv Rev ; 176: 113901, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331989

RESUMO

Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Pulmão , Modelos Biológicos , Medicamentos para o Sistema Respiratório/uso terapêutico , Animais , Bioengenharia , Humanos , Ciência Translacional Biomédica
13.
J Vis Exp ; (170)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33999027

RESUMO

The protocol developed here offers a tool to enable computer tracking of Escherichia coli division and fluorescent levels over several hours. The process starts by screening for colonies that survive on minimal media, assuming that only Escherichia coli harboring the correct plasmid will be able to thrive in the specific conditions. Since the process of building large genetic circuits, requiring the assembly of many DNA parts, is challenging, circuit components are often distributed between multiple plasmids at different copy numbers requiring the use of several antibiotics. Mutations in the plasmid can destroy transcription of the antibiotic resistance genes and interject with resources management in the cell leading to necrosis. The selected colony is set on a glass-bottom Petri dish and a few focus planes are selected for microscopy tracking in both bright field and fluorescent domains. The protocol maintains the image focus for more than 12 hours under initial conditions that cannot be regulated, creating a few difficulties. For example, dead cells start to accumulate in the lenses' field of focus after a few hours of imaging, which causes toxins to buildup and the signal to blur and decay. Depletion of nutrients introduces new metabolic processes and hinder the desired response of the circuit. The experiment's temperature lowers the effectivity of inducers and antibiotics, which can further damage the reliability of the signal. The minimal media gel shrinks and dries, and as a result the optical focus changes over time. We developed this method to overcome these challenges in Escherichia coli, similar to previous works developing analogous methods for other micro-organisms. In addition, this method offers an algorithm to quantify the total stochastic noise in unaltered and altered cells, finding that the results are consistent with flow analyzer predictions as shown by a similar coefficient of variation (CV).


Assuntos
Escherichia coli/patogenicidade , Microscopia/métodos , Imagem com Lapso de Tempo/métodos
14.
APL Bioeng ; 5(2): 026103, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33948527

RESUMO

Organ-on-a-Chip platforms provide rich opportunities to observe interactions between different cell types under in vivo-like conditions, i.e., in the presence of flow. Yet, the costs and know-how required for the fabrication and implementation of these platforms restrict their accessibility. This study introduces and demonstrates a novel Insert-Chip: a microfluidic device that provides the functionality of an Organ-on-a-Chip platform, namely, the capacity to co-culture cells, expose them to flow, and observe their interactions-yet can easily be integrated into standard culture systems (e.g., well plates or multi-electrode arrays). The device is produced using stereolithograpy 3D printing and is user-friendly and reusable. Moreover, its design features overcome some of the measurement and imaging challenges characterizing standard Organ-on-a-Chip platforms. We have co-cultured endothelial and epithelial cells under flow conditions to demonstrate the functionality of the device. Overall, this novel microfluidic device is a promising platform for the investigation of biological functions, cell-cell interactions, and response to therapeutics.

15.
Nat Commun ; 12(1): 3139, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035266

RESUMO

Complex biological systems in nature comprise cells that act collectively to solve sophisticated tasks. Synthetic biological systems, in contrast, are designed for specific tasks, following computational principles including logic gates and analog design. Yet such approaches cannot be easily adapted for multiple tasks in biological contexts. Alternatively, artificial neural networks, comprised of flexible interactions for computation, support adaptive designs and are adopted for diverse applications. Here, motivated by the structural similarity between artificial neural networks and cellular networks, we implement neural-like computing in bacteria consortia for recognizing patterns. Specifically, receiver bacteria collectively interact with sender bacteria for decision-making through quorum sensing. Input patterns formed by chemical inducers activate senders to produce signaling molecules at varying levels. These levels, which act as weights, are programmed by tuning the sender promoter strength Furthermore, a gradient descent based algorithm that enables weights optimization was developed. Weights were experimentally examined for recognizing 3 × 3-bit pattern.


Assuntos
Computadores Moleculares , Consórcios Microbianos/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Biologia Sintética/métodos , Escherichia coli , Redes Neurais de Computação , Percepção de Quorum/fisiologia
16.
J Vis Exp ; (169)2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33779620

RESUMO

The use of three-dimensional (3D) models of human arteries, which are designed with the correct dimensions and anatomy, enables the proper modeling of various important processes in the cardiovascular system. Recently, although several biological studies have been performed using such 3D models of human arteries, they have not been applied to study vascular targeting. This paper presents a new method to fabricate real-sized, reconstructed human arterial models using a 3D printing technique, line them with human endothelial cells (ECs), and study particle targeting under physiological flow. These models have the advantage of replicating the physiological size and conditions of blood vessels in the human body using low-cost components. This technique may serve as a new platform for studying and understanding drug targeting in the cardiovascular system and may improve the design of new injectable nanomedicines. Moreover, the presented approach may provide significant tools for the study of targeted delivery of different agents for cardiovascular diseases under patient-specific flow and physiological conditions.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Impressão Tridimensional/instrumentação , Células Cultivadas , Humanos
17.
J Biomech ; 119: 110305, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631661

RESUMO

Drug carriers for targeting cardiovascular diseases have been gaining a respectable attention, however, designing such carriers is challenging due to the biophysical complexity of the vascular system. Wall shear stress (WSS), exerted by blood flow on the endothelium surface, is a crucial factor in the circulatory system. WSS affects the adhesion and preferential accumulation of drug carriers. Here, we propose, an innovative approach to investigate particle adhesion in a converging artery-sized model, lined with human endothelial cells. Unlike widely used microfluidic and in vivo setups, our model enables to investigate particle accumulation in a continuous WSS range, performed in a single experiment, and at the right scale relevant for human arteries. First, we characterized the flow and the WSS map along the designed model, which can span along the entire arterial WSS range. We then used the model to examine the effect of particle size and the suspension buffer on particle adhesion distribution. The results demonstrated the role of particle size, where the same particles with a diameter of 2 µm exhibit shear-decreased adhesion while 500 nm particles exhibit shear-enhanced adhesion. Furthermore, under the same WSS, particles show a similar behavior when suspended in a Dextran buffer, having a viscosity analogous to blood, compared to a phosphate buffer solution without Dextran. Moreover, experiments with RBCs in the phosphate buffer, at a 40% physiological hematocrit, decreased particle adhesion and affected their deposition pattern. Altogether, our study suggests an original platform for investigating and optimizing intravascular drug carriers and their targeting properties.


Assuntos
Artérias , Células Endoteliais , Hemodinâmica , Humanos , Modelos Cardiovasculares , Tamanho da Partícula , Resistência ao Cisalhamento , Estresse Mecânico
18.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008437

RESUMO

Traditional antithrombotic agents commonly share a therapy-limiting side effect, as they increase the overall systemic bleeding risk. A novel approach for targeted antithrombotic therapy is nanoparticles. In other therapeutic fields, nanoparticles have enabled site-specific delivery with low levels of toxicity and side effects. Here, we paired nanotechnology with an established dimeric glycoprotein VI-Fc (GPVI-Fc) and a GPVI-CD39 fusion protein, thereby combining site-specific delivery and new antithrombotic drugs. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles, NP-BSA, NP-GPVI and NP-GPVI-CD39 were characterized through electron microscopy, atomic force measurements and flow cytometry. Light transmission aggregometry enabled analysis of platelet aggregation. Thrombus formation was observed through flow chamber experiments. NP-GPVI and NP-GPVI-CD39 displayed a characteristic surface coating pattern. Fluorescence properties were identical amongst all samples. NP-GPVI and NP-GPVI-CD39 significantly impaired platelet aggregation. Thrombus formation was significantly impaired by NP-GPVI and was particularly impaired by NP-GPVI-CD39. The receptor-coated nanoparticles NP-GPVI and the bifunctional molecule NP-GPVI-CD39 demonstrated significant inhibition of in vitro thrombus formation. Consequently, the nanoparticle-mediated antithrombotic effect of GPVI-Fc, as well as GPVI-CD39, and an additive impact of CD39 was confirmed. In conclusion, NP-GPVI and NP-GPVI-CD39 may serve as a promising foundation for a novel therapeutic approach regarding targeted antithrombotic therapy.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Fibrinolíticos/farmacologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Citometria de Fluxo , Humanos , Técnicas In Vitro , Microscopia Eletrônica , Modelos Biológicos , Nanopartículas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
19.
Nanotechnology ; 32(1): 012001, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33043901

RESUMO

Since the launch of the Alliance for Nanotechnology in Cancer by the National Cancer Institute in late 2004, several similar initiatives have been promoted all over the globe with the intention of advancing the diagnosis, treatment and prevention of cancer in the wake of nanoscience and nanotechnology. All this has encouraged scientists with diverse backgrounds to team up with one another, learn from each other, and generate new knowledge at the interface between engineering, physics, chemistry and biomedical sciences. Importantly, this new knowledge has been wisely channeled towards the development of novel diagnostic, imaging and therapeutic nanosystems, many of which are currently at different stages of clinical development. This roadmap collects eight brief articles elaborating on the interaction of nanomedicines with human biology; the biomedical and clinical applications of nanomedicines; and the importance of patient stratification in the development of future nanomedicines. The first article reports on the role of geometry and mechanical properties in nanomedicine rational design; the second articulates on the interaction of nanomedicines with cells of the immune system; and the third deals with exploiting endogenous molecules, such as albumin, to carry therapeutic agents. The second group of articles highlights the successful application of nanomedicines in the treatment of cancer with the optimal delivery of nucleic acids, diabetes with the sustained and controlled release of insulin, stroke by using thrombolytic particles, and atherosclerosis with the development of targeted nanoparticles. Finally, the last contribution comments on how nanomedicine and theranostics could play a pivotal role in the development of personalized medicines. As this roadmap cannot cover the massive extent of development of nanomedicine over the past 15 years, only a few major achievements are highlighted as the field progressively matures from the initial hype to the consolidation phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...