Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Laryngoscope ; 134 Suppl 4: S1-S11, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37540033

RESUMO

OBJECTIVES: Obstructive sleep apnea (OSA) is characterized by chronic systemic inflammation; however, the mechanisms underlying these pathologic consequences are incompletely understood. Our objective was to determine the effects of short- versus long-term exposure to intermittent hypoxia (IH) on pro-inflammatory mediators within vulnerable organs impacted by OSA. STUDY DESIGN: Experimental animal study. METHODS: A total of 8-10 week old C57BL/6J mice were exposed to normoxic or IH conditions for 7 days (short-term) or 6 weeks (long-term) under 12 h light, 12 h dark cycles. After exposure, multiple tissues were collected over a 24 h period. These tissues were processed and evaluated for gene expression and protein levels of pro-inflammatory mediators from peripheral tissues. RESULTS: We observed a global decrease in immune response pathways in the heart, lung, and liver compared with other peripheral organs after short-term exposure to IH. Although there were tissue-specific alterations in the gene expression of pro-inflammatory mediators, with down-regulation in the lung and up-regulation in the heart, we also observed reduced protein levels of pro-inflammatory mediators in the serum, lung, and heart following short-term exposure to IH. Long-term exposure to IH resulted in an overall increase in the levels of inflammatory mediators in the serum, lung, and heart. CONCLUSIONS: We demonstrated novel, longitudinal changes in the inflammatory cascade in a mouse model of OSA. The duration of exposure to IH led to significant variability of inflammatory responses within blood and cardiopulmonary tissues. Our findings further elucidate how inflammatory responses change over the course of the disease in vulnerable organs. LEVEL OF EVIDENCE: NA Laryngoscope, 134:S1-S11, 2024.


Assuntos
Hipóxia , Apneia Obstrutiva do Sono , Camundongos , Animais , Camundongos Endogâmicos C57BL , Hipóxia/patologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Modelos Animais de Doenças
2.
F1000Res ; 12: 762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576540

RESUMO

Background: The natural day-night cycle synchronizes our circadian rhythms, but modern work practices like night shifts disrupt this pattern, leading to increased exposure to nighttime light. This exposure is linked to various health issues. While some studies have explored the effects of night shifts on human circadian rhythms, there is limited research on the consequences of long-term exposure to shift-work light conditions. Rodents can provide valuable insights into these effects. This study aimed to examine how short- or long-term exposure to rotating shifts and chronic jetlag affects the core circadian oscillators in the liver and skin of mammals. Methods: C57BL/6J male mice were subjected to simulated shift-work light conditions, including short-term or long-term rotating shifts and chronic jet-lag conditions. Liver and skin samples were collected every four hours over a 24-hour period on the second day of constant darkness. RNA was extracted and qRT-PCR analysis was conducted to measure the circadian gene expression in liver and skin tissues. Circadian rhythm analysis using CircaCompare compared the control group to mice exposed to shift-work light conditions. Results: The liver's circadian clock is significantly altered in mice under long-term rotating shift conditions, with a lesser but still noticeable impact in mice experiencing chronic jetlag. However, short-term rotating shift conditions do not significantly affect the liver's circadian clock. Conversely, all three simulated shift conditions affect the skin's circadian clock, indicating that the skin clock is more sensitive to shift-work light conditions than the liver clock. Compared to the liver, the skin's circadian clock is greatly affected by long-term rotating shift conditions. Conclusions: The study findings indicate more pronounced disturbances in the canonical clock genes of the skin compared to the liver under simulated shift-work light conditions. These results suggest that the skin clock is more vulnerable to the effects of shift-work.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Masculino , Camundongos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Modelos Animais de Doenças , Fígado , Mamíferos , Camundongos Endogâmicos C57BL
3.
PLoS Biol ; 21(5): e3002139, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37252926

RESUMO

Intermittent hypoxia (IH) is a major clinical feature of obstructive sleep apnea (OSA). The mechanisms that become dysregulated after periods of exposure to IH are unclear, particularly in the early stages of disease. The circadian clock governs a wide array of biological functions and is intimately associated with stabilization of hypoxia-inducible factors (HIFs) under hypoxic conditions. In patients, IH occurs during the sleep phase of the 24-hour sleep-wake cycle, potentially affecting their circadian rhythms. Alterations in the circadian clock have the potential to accelerate pathological processes, including other comorbid conditions that can be associated with chronic, untreated OSA. We hypothesized that changes in the circadian clock would manifest differently in those organs and systems known to be impacted by OSA. Using an IH model to represent OSA, we evaluated circadian rhythmicity and mean 24-hour expression of the transcriptome in 6 different mouse tissues, including the liver, lung, kidney, muscle, heart, and cerebellum, after a 7-day exposure to IH. We found that transcriptomic changes within cardiopulmonary tissues were more affected by IH than other tissues. Also, IH exposure resulted in an overall increase in core body temperature. Our findings demonstrate a relationship between early exposure to IH and changes in specific physiological outcomes. This study provides insight into the early pathophysiological mechanisms associated with IH.


Assuntos
Apneia Obstrutiva do Sono , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/patologia , Ritmo Circadiano/genética , Modelos Animais de Doenças , Hipóxia/metabolismo
4.
PLoS One ; 18(5): e0284824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141220

RESUMO

Neurons in the hypothalamic preoptic area (POA) regulate multiple homeostatic processes, including thermoregulation and sleep, by sensing afferent input and modulating sympathetic nervous system output. The POA has an autonomous circadian clock and may also receive circadian signals indirectly from the suprachiasmatic nucleus. We have previously defined a subset of neurons in the POA termed QPLOT neurons that are identified by the expression of molecular markers (Qrfp, Ptger3, LepR, Opn5, Tacr3) that suggest receptivity to multiple stimuli. Because Ptger3, Opn5, and Tacr3 encode G-protein coupled receptors (GPCRs), we hypothesized that elucidating the G-protein signaling in these neurons is essential to understanding the interplay of inputs in the regulation of metabolism. Here, we describe how the stimulatory Gs-alpha subunit (Gnas) in QPLOT neurons regulates metabolism in mice. We analyzed Opn5cre; Gnasfl/fl mice using indirect calorimetry at ambient temperatures of 22°C (a historical standard), 10°C (a cold challenge), and 28°C (thermoneutrality) to assess the ability of QPLOT neurons to regulate metabolism. We observed a marked decrease in nocturnal locomotion of Opn5cre; Gnasfl/fl mice at both 28°C and 22°C, but no overall differences in energy expenditure, respiratory exchange, or food and water consumption. To analyze daily rhythmic patterns of metabolism, we assessed circadian parameters including amplitude, phase, and MESOR. Loss-of-function GNAS in QPLOT neurons resulted in several subtle rhythmic changes in multiple metabolic parameters. We observed that Opn5cre; Gnasfl/fl mice show a higher rhythm-adjusted mean energy expenditure at 22°C and 10°C, and an exaggerated respiratory exchange shift with temperature. At 28°C, Opn5cre; Gnasfl/fl mice have a significant delay in the phase of energy expenditure and respiratory exchange. Rhythmic analysis also showed limited increases in rhythm-adjusted means of food and water intake at 22°C and 28°C. Together, these data advance our understanding of Gαs-signaling in preoptic QPLOT neurons in regulating daily patterns of metabolism.


Assuntos
Regulação da Temperatura Corporal , Hipotálamo , Animais , Camundongos , Regulação da Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético , Homeostase , Hipotálamo/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Opsinas/metabolismo , Temperatura
5.
Toxicol Appl Pharmacol ; 436: 115863, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998857

RESUMO

Solid tumors are commonly treated with cisplatin, which can cause off-target side effects in cancer patients. Chronotherapy is a potential strategy to reduce drug toxicity. To determine the effectiveness of timed-cisplatin treatment in mammals, we compared two conditions: clock disrupted jet-lag and control conditions. Under normal and disrupted clock conditions, triple-negative mammary carcinoma cells were injected subcutaneously into eight-week-old NOD.Cg-Prkdcscid/J female mice. Tumor volumes and body weights were measured in these mice before and after treatment with cisplatin. We observed an increase in tumor volumes in mice housed under disrupted clock compared to the normal clock conditions. After treatment with cisplatin, we observed a reduced tumor growth rate in mice treated at ZT10 compared to ZT22 and untreated cohorts under normal clock conditions. However, these changes were not seen with the jet-lag protocol. We also observed greater body weight loss in mice treated with ZT10 compared to ZT22 or untreated mice in the jet-lag protocol. Our observations suggest that the effectiveness of cisplatin in mammary carcinoma treatment is time-dependent in the presence of the circadian clock.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cronoterapia/efeitos adversos , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Animais , Linhagem Celular , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD
6.
Genes (Basel) ; 12(10)2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681021

RESUMO

At least one-third of adults in the United States experience intermittent hypoxia (IH) due to health or living conditions. The majority of these adults suffer with sleep breathing conditions and associated circadian rhythm disorders. The impact of IH on the circadian clock is not well characterized. In the current study, we used an IH mouse model to understand the impact of IH on the circadian gene expression of the canonical clock genes in the central (the brain) and peripheral (the liver) tissues. Gene expression was measured using a Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR). CircaCompare was used to evaluate the differential rhythmicity between normoxia and IH. Our observations suggested that the circadian clock in the liver was less sensitive to IH compared to the circadian clock in the brain.


Assuntos
Proteínas CLOCK/genética , Ritmo Circadiano/genética , Hipóxia/genética , Sono/genética , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica/genética , Humanos , Hipóxia/fisiopatologia , Fígado/metabolismo , Fígado/fisiologia , Camundongos , Sono/fisiologia
7.
Diagnostics (Basel) ; 11(6)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199193

RESUMO

Obstructive sleep apnea (OSA) is a complex process that can lead to the dysregulation of the molecular clock, as well as 24 h rhythms of sleep and wake, blood pressure, and other associated biological processes. Previous work has demonstrated crosstalk between the circadian clock and hypoxia-responsive pathways. However, even in the absence of OSA, disrupted clocks can exacerbate OSA-associated outcomes (e.g., cardiovascular or cognitive outcomes). As we expand our understanding of circadian biology in the setting of OSA, this information could play a significant role in the diagnosis and treatment of OSA. Here, we summarize the pre-existing knowledge of circadian biology in patients with OSA and examine the utility of circadian biomarkers as alternative clinical tools.

8.
J Clin Sleep Med ; 17(12): 2533-2541, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34176557

RESUMO

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) is a chronic and widely prevalent disease associated with multiple health disorders. Current diagnostic strategies for OSA are limited because of cost, time, and access. Epigenetic signatures offer insight into the relationships between disease and environment and could play a significant role in developing both diagnostic and therapeutic tools for OSA. In the current study, a systematic literature search was conducted to investigate the existing evidence of OSA-associated epigenetic modifications. METHODS: A systematic literature search was performed using electronic academic databases including PubMed, CINAHL, Scopus, Embase, EBM Reviews, and Web of Science. However, the current study focused on screening for original, English-language articles pertaining to OSA and associated epigenetic mechanisms. To produce unbiased results, screening was performed independently by authors. RESULTS: We identified 2,944 publications in our systematic search. Among them, 65 research articles were related to OS A-associated differential gene expression, genetic variation, and epigenetic modifications. Although these 65 articles were considered for full manuscript review, only 12 articles met the criteria of OSA-associated epigenetic modifications in human and animal models. Human patients with OSA had unique epigenetic changes compared to healthy control patients and, interestingly, epigenetic signatures were commonly identified in genes associated with metabolic and inflammatory pathways. CONCLUSIONS: Although the available studies are limited, this research provides novel insights for the development of epigenetic markers for the diagnosis and treatment of OSA. Thorough genome-wide investigations will be required to develop cost-effective, robust biomarkers for the identification of OSA among children and adults. Here, we offer a study design for such efforts. CITATION: Leader BA, Koritala BSC, Moore CA, Dean EG, Kottyan LC, Smith DF. Epigenetics of obstructive sleep apnea syndrome: a systematic review. J Clin Sleep Med. 2021;17(12):2533-2541.


Assuntos
Apneia Obstrutiva do Sono , Biomarcadores , Análise Custo-Benefício , Epigênese Genética , Humanos , Apneia Obstrutiva do Sono/genética
9.
Pigment Cell Melanoma Res ; 34(5): 955-965, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34160901

RESUMO

Solar ultraviolet B radiation (UVB) is one of the leading causes of various skin conditions, including photoaging, sunburn erythema, and melanoma. As a protective response, the skin has inbuilt defense mechanisms, including DNA repair, cell cycle, apoptosis, and melanin synthesis. Though DNA repair, cell cycle, and apoptosis are clock controlled, the circadian mechanisms associated with melanin synthesis are not well understood. Using human melanocytes and melanoma cells under synchronized clock conditions, we observed that the microphthalmia-associated transcription factor (MITF), a rate-limiting protein in melanin synthesis, is expressed rhythmically with 24-hr periodicity in the presence of circadian clock protein, BMAL1. Furthermore, we demonstrated that BMAL1 binds to the promoter region of MITF and transcriptionally regulates its expression, which positively influences melanin synthesis. Finally, we report that an increase in melanin levels due to BMAL1 overexpression protects human melanoma cells from UVB. In conclusion, our studies provide novel insights into the mechanistic role of the circadian clock in melanin synthesis and protection against UVB-mediated DNA damage and genomic instability.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Proteínas de Neoplasias/genética
10.
J Pineal Res ; 70(3): e12726, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33638890

RESUMO

Circadian disruption has been identified as a risk factor for health disorders such as obesity, cardiovascular disease, and cancer. Although epidemiological studies suggest an increased risk of various cancers associated with circadian misalignment due to night shift work, the underlying mechanisms have yet to be elucidated. We sought to investigate the potential mechanistic role that circadian disruption of cancer hallmark pathway genes may play in the increased cancer risk in shift workers. In a controlled laboratory study, we investigated the circadian transcriptome of cancer hallmark pathway genes and associated biological pathways in circulating leukocytes obtained from healthy young adults during a 24-hour constant routine protocol following 3 days of simulated day shift or night shift. The simulated night shift schedule significantly altered the normal circadian rhythmicity of genes involved in cancer hallmark pathways. A DNA repair pathway showed significant enrichment of rhythmic genes following the simulated day shift schedule, but not following the simulated night shift schedule. In functional assessments, we demonstrated that there was an increased sensitivity to both endogenous and exogenous sources of DNA damage after exposure to simulated night shift. Our results suggest that circadian dysregulation of DNA repair may increase DNA damage and potentiate elevated cancer risk in night shift workers.


Assuntos
Biomarcadores Tumorais/genética , Transtornos Cronobiológicos/etiologia , Ritmo Circadiano , Dano ao DNA , Reparo do DNA , Neoplasias/etiologia , Jornada de Trabalho em Turnos/efeitos adversos , Transcriptoma , Ciclos de Atividade , Adulto , Transtornos Cronobiológicos/genética , Transtornos Cronobiológicos/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias/genética , Neoplasias/patologia , Medição de Risco , Fatores de Risco , Sono , Fatores de Tempo , Adulto Jovem
11.
J Biol Rhythms ; 35(2): 134-144, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31878828

RESUMO

The circadian clock controls daily activities at the cellular and organismic level, allowing an organism to anticipate incoming stresses and to use resources accordingly. The circadian clock has therefore been considered a fitness trait in multiple organisms. However, the mechanism of how circadian clock variation influences organismal reproductive fitness is still not well understood. Here we describe habitat-specific clock variation (HSCV) of asexual reproduction in Neurospora discreta, a species that is adapted to 2 different habitats, under or above tree bark. African (AF) N. discreta strains, whose habitat is above the tree bark in light-dark (LD) conditions, display a higher rhythmicity index compared with North American (NA) strains, whose habitat is under the tree bark in constant dark (DD). Although AF-type strains demonstrated an overall fitness advantage under LD and DD conditions, NA-type strains exhibit a habitat-specific fitness advantage in DD over the LD condition. In addition, we show that allelic variation of the clock-controlled gene, Ubiquinol cytochrome c oxidoreductase (NEUDI_158280), plays a role in HSCV by modulating cellular reactive oxygen species levels. Our results demonstrate a mechanism by which local adaptation involving circadian clock regulation influences reproductive fitness.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano , Ecossistema , Aptidão Genética , Neurospora/fisiologia , Reprodução Assexuada/genética , Adaptação Fisiológica , Alelos , Proteínas CLOCK/genética , Relógios Circadianos/fisiologia , Neurospora/genética , Fotoperíodo
12.
Psych J ; 7(4): 176-196, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456783

RESUMO

In the course of evolution, health is prioritized for human well-being and economies. Epidemiological and experimental studies suggest that modern life habits, including eating habits, and living and working conditions, can deteriorate health through circadian misalignment. This has been most commonly observed with urban societies and working classes of non-standard working schedules (NSWSs), such as shift work, night work, and overtime work. Poor health conditions with NSWSs generate economic burden for the modern society. Therefore, we attempt to provide a systematic approach to understanding the relations among the circadian clock, health, and economics. To understand these connections, we review the mechanisms of the human circadian clock and how modern living conditions can misalign the circadian system and associated health consequences. We also emphasize the importance of health for the modern economy and the economic costs of health disorders associated with circadian disruption and NSWSs.


Assuntos
Relógios Circadianos/fisiologia , Economia , Nível de Saúde , Ritmo Circadiano/fisiologia , Emprego , Humanos , Luz , Jornada de Trabalho em Turnos
13.
Adv Genet ; 99: 1-37, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29050553

RESUMO

Most living organisms on earth experience daily and expected changes from the rotation of the earth. For an organism, the ability to predict and prepare for incoming stresses or resources is a very important skill for survival. This cellular process of measuring daily time of the day is collectively called the circadian clock. Because of its fundamental role in survival in nature, there is a great interest in studying the natural variation of the circadian clock. However, characterizing the genetic and molecular mechanisms underlying natural variation of circadian clocks remains a challenging task. In this chapter, we will summarize the progress in studying natural variation of the circadian clock in the successful eukaryotic model Neurospora, which led to discovering many design principles of the molecular mechanisms of the eukaryotic circadian clock. Despite the success of the system in revealing the molecular mechanisms of the circadian clock, Neurospora has not been utilized to extensively study natural variation. We will review the challenges that hindered the natural variation studies in Neurospora, and how they were overcome. We will also review the advantages of Neurospora for natural variation studies. Since Neurospora is the model fungal species for circadian study, it represents over 5 million species of fungi on earth. These fungi play important roles in ecosystems on earth, and as such Neurospora could serve as an important model for understanding the ecological role of natural variation in fungal circadian clocks.


Assuntos
Relógios Circadianos , Regulação Fúngica da Expressão Gênica , Neurospora crassa/genética , Neurospora crassa/fisiologia , Ritmo Circadiano , Ecótipo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...