Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673828

RESUMO

Dendritic structures play a pivotal role in the computational processes occurring within neurons. Signal propagation along dendrites relies on both passive conduction and active processes related to voltage-dependent ion channels. Among these channels, extrasynaptic N-methyl-D-aspartate channels (exNMDA) emerge as a significant contributor. Prior studies have mainly concentrated on interactions between synapses and nearby exNMDA (100 nm-10 µm from synapse), activated by presynaptic membrane glutamate. This study concentrates on the correlation between synaptic inputs and distal exNMDA (>100 µm), organized in clusters that function as signal amplifiers. Employing a computational model of a dendrite, we elucidate the mechanism underlying signal amplification in exNMDA clusters. Our findings underscore the pivotal role of the optimal spatial positioning of the NMDA cluster in determining signal amplification efficiency. Additionally, we demonstrate that exNMDA subunits characterized by a large conduction decay constant. Specifically, NR2B subunits exhibit enhanced effectiveness in signal amplification compared to subunits with steeper conduction decay. This investigation extends our understanding of dendritic computational processes by emphasizing the significance of distant exNMDA clusters as potent signal amplifiers. The implications of our computational model shed light on the spatial considerations and subunit characteristics that govern the efficiency of signal amplification in dendritic structures, offering valuable insights for future studies in neurobiology and computational neuroscience.


Assuntos
Simulação por Computador , Dendritos , Receptores de N-Metil-D-Aspartato , Sinapses , Receptores de N-Metil-D-Aspartato/metabolismo , Dendritos/metabolismo , Sinapses/metabolismo , Animais , Modelos Neurológicos , Humanos , Transdução de Sinais
2.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203751

RESUMO

Presenilin 1 (PS1) is a transmembrane proteolytic subunit of γ-secretase that cleaves amyloid precursor proteins. Mutations in PS1 (mPS1) are associated with early-onset familial Alzheimer's disease (AD). The link between mutated PS1, mitochondrial calcium regulation, and AD has been studied extensively in different test systems. Despite the wide-ranging role of mPS1 in AD, there is a paucity of information on the link between PS1 and neuronal cell death, a hallmark of AD. In the present study, we employed the selective mitochondrial uncoupler carbonyl cyanide chlorophenylhydrazone (CCCP) and compared the reactivity of mPS1-transfected cultured rat hippocampal neurons with PS1 and control neurons in a situation of impaired mitochondrial functions. CCCP causes a slow rise in cytosolic and mitochondrial calcium in all three groups of neurons, with the mPS1 neurons demonstrating a faster rise. Consequently, mPS1 neurons were depolarized by CCCP and measured with TMRM, a mitochondrial voltage indicator, more than the other two groups. Morphologically, CCCP produced more filopodia in mPS1 neurons than in the other two groups, which were similarly affected by the drug. Finally, mPS1 transfected neurons tended to die from prolonged exposure to CCCP sooner than the other groups, indicating an increase in vulnerability associated with a lower ability to regulate excess cytosolic calcium.


Assuntos
Doença de Alzheimer , Cálcio , Nitrilas , Animais , Ratos , Carbonil Cianeto m-Clorofenil Hidrazona , Cianetos , Neurônios , Cálcio da Dieta , Hipocampo
3.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629119

RESUMO

A major route for the influx of calcium ions into neurons uses the STIM-Orai1 voltage-independent channel. Once cytosolic calcium ([Ca2+]i) elevates, it activates mitochondrial and endoplasmic calcium stores to affect downstream molecular pathways. In the present study, we employed a novel drug, carbonyl cyanide chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, to explore the role of mitochondria in cultured neuronal morphology. CCCP caused a sustained elevation of [Ca2+]i and, quite surprisingly, a massive increase in the density of dendritic filopodia and spines in the affected neurons. This morphological change can be prevented in cultures exposed to a calcium-free medium, Orai1 antagonist 2APB, or cells transfected with a mutant Orai1 plasmid. It is suggested that CCCP activates mitochondria through the influx of calcium to cause rapid growth of dendritic processes.


Assuntos
Mitocôndrias , Neurônios , Carbonil Cianeto m-Clorofenil Hidrazona , Cianetos , Cálcio da Dieta , Hipocampo
4.
Front Neurosci ; 17: 1249815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575294

RESUMO

This review uncovers the intricate relationship between presenilins, calcium, and mitochondria in the context of Alzheimer's disease (AD), with a particular focus on the involvement of presenilin mutations in mitochondrial dysfunction. So far, it is unclear whether the impairment of mitochondrial function arises primarily from damage inflicted by ß-amyloid upon mitochondria or from the disruption of calcium homeostasis due to presenilins dysfunctions. The roles of presenilins in mitophagy, autophagy, mitochondrial dynamics, and many other functions, non-γ-secretase related, also require close attention in future research. Resolution of contradictions in understanding of presenilins cellular functions are needed for new effective therapeutic strategies for AD.

5.
Brain Sci ; 13(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36979218

RESUMO

One of the most important tasks in neuroscience is the search for theoretical foundations for the development of methods for diagnosing and treating neurological pathology, and for assessing the effect of pharmacological drugs on the nervous system. Specific behavioral changes associated with exposure to systemic influences have been invisible to the human eye for a long time. A similar pattern of changes is characteristic of phenazepam, a drug with a wide range of effects on the brain. In this study, we used a color-coding method, which consists of combining three time positions in one image, the present (0 s), the near future (0.33 s) and the far future (1.6 s). This method made it possible to identify movement patterns, such as the initialization of ahead movements, side turns and 180° turns (back), and also to determine the degree of predictability of future movements. The obtained data revealed a decrease in the number of turns to the sides while maintaining ahead movement, as well as an increase in the predictability of movements in rats under the influence of phenazepam. Thus, sedative doses of phenazepam do not exhibit general depression of brain functions, but the inhibition of specific centers, including the medial prefrontal cortex and postsubiculum, which are involved in stereotypic locomotive behavior.

6.
Toxins (Basel) ; 15(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977093

RESUMO

Neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease, significantly reduce the quality of life of patients and eventually result in complete maladjustment. Disruption of the synapses leads to a deterioration in the communication of nerve cells and decreased plasticity, which is associated with a loss of cognitive functions and neurodegeneration. Maintaining proper synaptic activity depends on the qualitative composition of mitochondria, because synaptic processes require sufficient energy supply and fine calcium regulation. The maintenance of the qualitative composition of mitochondria occurs due to mitophagy. The regulation of mitophagy is usually based on several internal mechanisms, as well as on signals and substances coming from outside the cell. These substances may directly or indirectly enhance or weaken mitophagy. In this review, we have considered the role of some compounds in process of mitophagy and neurodegeneration. Some of them have a beneficial effect on the functions of mitochondria and enhance mitophagy, showing promise as novel drugs for the treatment of neurodegenerative pathologies, while others contribute to a decrease in mitophagy.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Mitofagia/fisiologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Qualidade de Vida , Mitocôndrias , Doença de Alzheimer/tratamento farmacológico , Autofagia
7.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293178

RESUMO

While neuronal mitochondria have been studied extensively in their role in health and disease, the rules that govern calcium regulation in mitochondria remain somewhat vague. In the present study using cultured rat hippocampal neurons transfected with the mtRCaMP mitochondrial calcium sensor, we investigated the effects of cytosolic calcium surges on the dynamics of mitochondrial calcium ([Ca2+]m). Cytosolic calcium ([Ca2+]c) was measured using the high affinity sensor Fluo-2. We recorded two types of calcium events: local and global ones. Local events were limited to a small, 2-5 µm section of the dendrite, presumably caused by local synaptic activity, while global events were associated with network bursts and extended throughout the imaged dendrite. In both cases, cytosolic surges were followed by a delayed rise in [Ca2+]m. In global events, the rise lasted longer and was observed in all mitochondrial clusters. At the end of the descending part of the global event, [Ca2+]m was still high. Global events were accompanied by short and rather high [Ca2+]m surges which we called spikelets, and were present until the complete decay of the cytosolic event. In the case of local events, selective short-term responses were limited to the part of the mitochondrial cluster that was located directly in the center of [Ca2+]c activity, and faded quickly, while responses in the neighboring regions were rarely observed. Caffeine (which recruits ryanodine receptors to supply calcium to the mitochondria), and carbonyl cyanide m-chlorophenyl hydrazine (CCCP, a mitochondrial uncoupler) could affect [Ca2+]m in both global and local events. We constructed a computational model to simulate the fundamental role of mitochondria in restricting calcium signals within a narrow range under synapses, preventing diffusion into adjacent regions of the dendrite. Our results indicate that local cytoplasmic and mitochondrial calcium concentrations are highly correlated. This reflects a key role of signaling pathways that connect the postsynaptic membrane to local mitochondrial clusters.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Ratos , Animais , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Cafeína/farmacologia , Mitocôndrias/metabolismo , Sinalização do Cálcio , Hipocampo/metabolismo , Neurônios/metabolismo
8.
PLoS Biol ; 20(5): e3001663, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35623029

RESUMO

[This corrects the article DOI: 10.1371/journal.pbio.2006202.].

9.
Sci Adv ; 7(38): eabh1376, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524854

RESUMO

Dendritic spines are critical components of neuronal synapses as they receive and transform synaptic inputs into a succession of calcium-regulated biochemical events. The spine apparatus (SA), an extension of smooth endoplasmic reticulum, regulates slow and fast calcium dynamics in spines. Calcium release events deplete SA calcium ion reservoir rapidly, yet the next cycle of signaling requires its replenishment. How spines achieve this replenishment without triggering calcium release remains unclear. Using computational modeling, calcium and STED superresolution imaging, we show that the SA replenishment involves the store-operated calcium entry pathway during spontaneous calcium transients. We identified two main conditions for SA replenishment without depletion: a small amplitude and a slow timescale for calcium influx, and a close proximity between SA and plasma membranes. Thereby, spine's nanoscale organization separates SA replenishment from depletion. We further conclude that spine's receptor organization also determines the calcium dynamics during the induction of long-term synaptic changes.

10.
Front Synaptic Neurosci ; 12: 573714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469426

RESUMO

There are growing indications for the involvement of calcium stores in the plastic properties of neurons and particularly in dendritic spines of central neurons. The store-operated calcium entry (SOCE) channels are assumed to be activated by the calcium sensor stromal interaction molecule (STIM)which leads to activation of its associated Orai channel. There are two STIM species, and the differential role of the two in SOCE is not entirely clear. In the present study, we were able to distinguish between transfected STIM1, which is more mobile primarily in young neurons, and STIM2 which is less mobile and more prominent in older neurons in culture. STIM1 mobility is associated with spontaneous calcium sparks, local transient rise in cytosolic [Ca2+]i, and in the formation and elongation of dendritic filopodia/spines. In contrast, STIM2 is associated with older neurons, where it is mobile and moves into dendritic spines primarily when cytosolic [Ca2+]i levels are reduced, apparently to activate resident Orai channels. These results highlight a role for STIM1 in the regulation of [Ca2+]i fluctuations associated with the formation of dendritic spines or filopodia in the developing neuron, whereas STIM2 is associated with the maintenance of calcium entry into stores in the adult neuron.

11.
Oxid Med Cell Longev ; 2019: 7284967, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467635

RESUMO

Mutations in the presenilin 1 (PS1) gene are a major trigger of familial Alzheimer's disease (AD), yet the mechanisms affected by mutated PS1 causing cognitive decline are not yet elucidated. In the present study, we compared rat hippocampal neurons in culture, transfected with PS1 or with mutant (M146V) PS1 (mPS1) plasmids in several neuronal functions. Initially, we confirmed earlier observations that mPS1-expressing neurons are endowed with fewer mature "mushroom" spines and more filopodial immature protrusions. The correlation between calcium changes in the cytosol, mitochondria, and endoplasmic reticulum (ER) is mitigated in the mPS1 neurons, tested by the response to an abrupt increase in ambient [Ca2+]o; cytosolic [Ca2+]i is higher in the mPS1 neurons but mitochondrial [Ca2+] is lower than in control neurons. Strikingly, mPS1-transfected neurons express higher excitability and eventual lower survival rate when exposed to the oxidative stressor, paraquat. These results highlight an impaired calcium regulation in mPS1 neurons, resulting in a reduced ability to handle oxidative stress, which may lead to cell death and AD.


Assuntos
Retículo Endoplasmático/metabolismo , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Presenilina-1/metabolismo , Animais , Células Cultivadas , Mutação , Ratos
12.
PLoS Biol ; 17(6): e2006202, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31163024

RESUMO

Fast calcium transients (<10 ms) remain difficult to analyse in cellular microdomains, yet they can modulate key cellular events such as trafficking, local ATP production by endoplasmic reticulum-mitochondria complex (ER-mitochondria complex), or spontaneous activity in astrocytes. In dendritic spines receiving synaptic inputs, we show here that in the presence of a spine apparatus (SA), which is an extension of the smooth ER, a calcium-induced calcium release (CICR) is triggered at the base of the spine by the fastest calcium ions arriving at a Ryanodyne receptor (RyR). The mechanism relies on the asymmetric distributions of RyRs and sarco/ER calcium-ATPase (SERCA) pumps that we predict using a computational model and further confirm experimentally in culture and slice hippocampal neurons. The present mechanism for which the statistics of the fastest particles arriving at a small target, followed by an amplification, is likely to be generic in molecular transduction across cellular microcompartments, such as thin neuronal processes, astrocytes, endfeets, or protrusions.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Animais , Encéfalo/metabolismo , Simulação por Computador , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático Liso/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neurônios/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
13.
J Ethnopharmacol ; 229: 22-28, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30287194

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A major concern in modern society involves the lasting detrimental behavioral effects of exposure to alcoholic beverages. Consequently, hundreds of folk remedies for hangover have been suggested, most of them without a scientific basis, for lack of proper test systems. Over centuries, yellow toadflax (Linaria vulgaris Mill., Lv) tincture has been used in Russian traditional medicine to treat the spectrum of hangover symptoms such as vertigo, headache, drunken behaviors, and as a sedative. MATERIALS AND METHODS: Here we use in-vitro cultured hippocampal neurons to examine the effect of the Lv extract as well as the flavonoid acetylpectolinarin (ACP) exclusively found in Lv extract, on spontaneous network activity of the cultured neurons exposed to low, physiological concentrations of ethanol. RESULTS: As in previous studies, low (0.25-0.5%) ethanol causes an increase in network activity, which was converted to suppression, with high concentrations of ethanol. Lv extract and ACP, at low concentrations, had no appreciable effect on spontaneous activity, but they blocked the facilitating action of low ethanol. This action of ACP was also seen when the culture was exposed to 1-EBIO, a SK potassium channel opener, and was blocked by apamin, an SK channel antagonist. In contrast, ACP or Lv extracts did not reverse the suppressive effects of higher ethanol. CONCLUSIONS: Our results suggest that ACP acts by interacting with the SK channel, to block the facilitatory effect of low concentration of ethanol, on network activity in hippocampal cultures.


Assuntos
Cromonas/farmacologia , Etanol/efeitos adversos , Flavonoides/farmacologia , Hipocampo/efeitos dos fármacos , Linaria , Extratos Vegetais/farmacologia , Apamina/farmacologia , Hipocampo/fisiologia , Medicina Tradicional , Bloqueadores dos Canais de Potássio/farmacologia , Federação Russa
14.
Sci Rep ; 7: 44401, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276496

RESUMO

Mitochondrial Carrier Homolog 2 (MTCH2) is a novel regulator of mitochondria metabolism, which was recently associated with Alzheimer's disease. Here we demonstrate that deletion of forebrain MTCH2 increases mitochondria and whole-body energy metabolism, increases locomotor activity, but impairs motor coordination and balance. Importantly, mice deficient in forebrain MTCH2 display a deficit in hippocampus-dependent cognitive functions, including spatial memory, long term potentiation (LTP) and rates of spontaneous excitatory synaptic currents. Moreover, MTCH2-deficient hippocampal neurons display a deficit in mitochondria motility and calcium handling. Thus, MTCH2 is a critical player in neuronal cell biology, controlling mitochondria metabolism, motility and calcium buffering to regulate hippocampal-dependent cognitive functions.


Assuntos
Cálcio/metabolismo , Cognição/fisiologia , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Neurônios/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Hipocampo/fisiopatologia , Locomoção/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Neurônios/patologia , Equilíbrio Postural/fisiologia , Prosencéfalo/metabolismo , Prosencéfalo/fisiopatologia , Transtornos Psicomotores/metabolismo , Transtornos Psicomotores/fisiopatologia , Teste de Desempenho do Rota-Rod , Memória Espacial/fisiologia , Transmissão Sináptica/fisiologia
15.
Neurobiol Learn Mem ; 140: 1-10, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28189550

RESUMO

It is well established that neurons are plastic and can change the strength of their connections with other neurons depending on their recent history. While many molecular entities involved in plastic processes were already described, the role of a store-operated calcium channel ORAI1 in neuronal plasticity is not known as yet. Using dominant negative form of ORAI1, we were able to show that ORAI1 is needed for formation of new dendritic spines following chemical induction of long term potentiation (cLTP), and that this is due to the release of Ca+2 from ryanodine receptor-associated endoplasmic reticulum stores. We propose that when ORAI1 is deficient, there is less Ca+2 in the stores, less releasable Ca+2 and consequently less LTP and spine formation.


Assuntos
Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Proteína ORAI1/genética , Animais , Células Cultivadas , Retículo Endoplasmático/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/citologia , Proteína ORAI1/metabolismo , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
16.
J Physiol ; 595(1): 125-140, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27393042

RESUMO

KEY POINTS: The role of non-synaptic calcium entry in the formation and functions of dendritic spines was studied in dissociated cultured rat hippocampal neurons. Orai1, a store-operated calcium channel, is found in dendritic spines. Orai1 co-localizes in dendritic spines with STIM2 under conditions of lower [Ca2+ ]o. Orai1 channels are associated with the formation of new dendritic spines in response to elevated [Ca2+ ]o. Lack of Orai1, either by transfection with a dominant negative construct or with small interfering RNA to Orai1, results in retarded dendritic spines, an increase in density of filopodia, lower synaptic connectivity and the ability to undergo plastic changes. These results highlight a novel role for Orai1 in synapse formation, maturation and plasticity. ABSTRACT: The possible role of store operated calcium entry (SOCE) through the Orai1 channel in the formation and functions of dendritic spines was studied in cultured hippocampal neurons. In calcium store-depleted neurons, a transient elevation of extracellular calcium concentration ([Ca2+ ]o ) caused a rise in [Ca2+ ]i that was mediated by activation of the SOCE. The store depletion resulted in an increase in stromal interacting molecule 2 (an endoplasmic calcium sensor) association with Orai1 in dendritic spines. The response to the rise in [Ca2+ ]o was larger in spines endowed with a cluster of Orai1 molecules than in spines devoid of Orai1. Transfection of neurons with a dominant negative Orai1 resulted in retarded maturation of dendritic spines, a reduction in synaptic connectivity with afferent neurons and a reduction in the ability to undergo morphological changes following induction of chemical long-term potentiation. Similarly, small interfering RNA (siRNA)-treated neurons had fewer mature dendritic spines, and lower rates of mEPSCs compared to scrambled control siRNA-treated neurons. Thus, influx of calcium through Orai1 channels facilitates the maturation of dendritic spines and the formation of functional synapses in central neurons.


Assuntos
Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Proteína ORAI1/fisiologia , Sinapses/fisiologia , Animais , Cálcio/fisiologia , Ratos
18.
Neuroscientist ; 22(5): 477-85, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26511041

RESUMO

Calcium stores in the endoplasmic reticulum play important roles in a variety of mammalian cellular functions. However, the multitude of calcium-handling machineries in neurons, including voltage- and ligand-gated channels, calcium-binding proteins, pumps, and transporters, as well as the rapid mobility of calcium ions among different cellular compartments hampered the singling out of calcium stores as a pivotal player in synaptic plasticity. Despite these methodological obstacles, novel molecular and imaging tools afforded a rapid progress in deciphering the role of specific calcium stores in neuronal functions. In the present review, we will address several key issues related to the involvement of ryanodine receptors and the calcium entry channel Orai1 in dendritic spine development and plasticity as well as their derailing in neurodegenerative diseases.


Assuntos
Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Retículo Endoplasmático/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Humanos , Neurônios/fisiologia
19.
J Ethnopharmacol ; 163: 220-8, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25656000

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The aqueous extract of the plant Malmpyrum pratense (Mp), is widely used in traditional medicine as a sedative, yet the biological basis of its action is not known. AIM OF THE STUDY: The effects of Mp on network activity and intrinsic and synaptic properties were studied in cultured hippocampal neurons in an attempt to analyze its mode of action. MATERIALS AND METHODS: Dissociated cultures of rat hippocampal neurons were used. Spontaneous network activity was assessed by variations in intracellular [Ca(2+)] concentrations, reflecting action potential discharges. Individual neuronal synaptic activity was measured by patch clamp recordings from similar neurons. The effect of exposure to different concentrations of Mp and some of its main ingredients was measured. RESULTS: Mp produced complex, dose dependent, reversible effects on network activity, increasing it with low concentrations, and decreasing it at high concentrations. Individual flavonoids contained in Mp mimicked the effects of the extract, both for the facilitating and suppressing effects of the extract. Electrophysiologically, Mp caused a reduction in spontaneous activity, but did not affect membrane properties of individual patch clamped neurons, nor did it affect mEPSCs recorded from these neurons. However, a transient increase in reactivity to pulse application of GABA was evident. CONCLUSIONS: These results suggest that a main sedative effect of Mp is on GABAergic neurotransmission in cultured hippocampal neurons.


Assuntos
Flavonoides/farmacologia , Neurônios/efeitos dos fármacos , Extratos Vegetais/farmacologia , Traqueófitas , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/citologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Neurônios/fisiologia , Ratos
20.
Neurotoxicology ; 47: 62-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25655208

RESUMO

The effects of chronic exposure to moderate concentrations of ethanol were studied in cultured hippocampal neurons. Network activity, assessed by imaging of [Ca(2+)]i variations, was markedly suppressed following 5 days of exposure to 0.25-1% ethanol. The reduced activity was sustained following extensive washout of ethanol, but the activity recovered by blockade of inhibition with bicuculline. This reduction of network activity was associated with a reduction in rates of mEPSCs, but not in a change in inhibitory synaptic activity. Chronic exposure to ethanol caused a significant reduction in the density of mature dendritic spines, without an effect on dendritic length or arborization. These results indicate that chronic exposure to ethanol causes a reduction in excitatory network drive in hippocampal neurons adding another dimension to the chronic effects of alcohol abuse.


Assuntos
Etanol/toxicidade , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Etanol/administração & dosagem , Hipocampo/patologia , Hipocampo/fisiopatologia , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...