Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38173822

RESUMO

FÓ§rster resonance energy transfer (FRET)-based systems are widely applicable in many areas of interest. In this study, a novel FRET-based ionic material (IM) was synthesized by pairing carbazole imidazolium cation (CI+) with fluorescein anion (Fl2-) through a simple ion-exchange method. The resulting IM ([CI]2[Fl]) was converted into an ionic nanoparticle (INP) in aqueous media for practical use for bioimaging application. The photophysical properties of the parent dyes, [CI]2[Fl], and INP were studied in detail. All FRET parameters were calculated in the synthesized material. [CI]2[Fl] exhibited a significant spectral overlap integral and an ideal theoretical FRET distance. The presence of the FRET mechanism was verified by the observed decrease in donor fluorescence lifetime and a moderate FRET efficiency in [CI]2[Fl]. The INP formed from [CI]2[Fl] was evaluated for use as a fluorescent pH probe and bioimaging agent. FRET efficiency of INP is calculated in a series of pH studies which indicates the highest efficiency at physiological pH. Whereas no FRET phenomenon is observed in highly acidic and basic conditions. The pH-dependent photophysical properties of [CI]2[Fl] are monitored and allow for the potential application as a fluorescent probe for the detection of acidic tissues in biological systems. The FRET-capable INP showed superior bioimaging capability in vitro as compared to the parent dye.

2.
ACS Appl Bio Mater ; 2(7): 2766-2779, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030811

RESUMO

This study reports on the fabrication of a controlled release system for the delivery of levonorgestrel (LNG) for long-term contraception. LNG was encapsulated in chemically cross-linked chitosan (CS) microspheres, and microspheres presented a spherical geometry with a good particle size distribution (polydispersity index (PDI) < 0.1). The LNG-CS microspheres were classified based on their particle size range, <63, 63-125, and 125-300 µm, where the 125-300 µm particles were selected to be incorporated into a physically cross-linked and annealed PVA hydrogel matrix to prolong the drug release. PVA concentrations and the annealing treatment influenced the swelling behavior of PVA hydrogels. Fourier transform infrared (FTIR) spectroscopy indicated that CS was successfully cross-linked through the formation of a Schiff base; the PVA hydrogel was formed through hydrogen bonding without reacting with LNG, which was only physically entrapped, thus maintaining its stability. Differential scanning calorimetry (DSC) showed that freeze-thaw and annealing processes increased the degree of crystallinity in the PVA hydrogel. In vitro drug release assessments for all formulations showed zero order without any burst release. Over a period of 100 days, 34, 27, and 21% of LNG was released from the CS-LNG microspheres in the size ranges < 63, 63-125, and 125-300 µm, respectively, while only 14, 11, and 9% of LNG was released when the CS-LNG microspheres were incorporated into 10, 15, and 20% PVA hydrogels, respectively. The drug release kinetics exhibited both diffusion- and swelling-controlled mechanisms following the Korsmeyer-Peppas model. This work presents a promising delivery system for long-term contraception with controlled zero-order release behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA