Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 80(3): 475-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25146719

RESUMO

Plant life is characterized by major phase changes. We studied the role of histone deacetylase (HDAC) activity in the transition from seed to seedling in Arabidopsis. Pharmacological inhibition of HDAC stimulated germination of freshly harvested seeds. Subsequent analysis revealed that histone deacetylase 9 (hda9) mutant alleles displayed reduced seed dormancy and faster germination than wild-type plants. Transcriptome meta-analysis comparisons between the hda9 dry seed transcriptome and published datasets demonstrated that transcripts of genes that are induced during imbibition in wild-type prematurely accumulated in hda9-1 dry seeds. This included several genes associated with photosynthesis and photoautotrophic growth such as RuBisCO and RuBisCO activase (RCA). Chromatin immunoprecipitation experiments demonstrated enhanced histone acetylation levels at their loci in young hda9-1 seedlings. Our observations suggest that HDA9 negatively influences germination and is involved in the suppression of seedling traits in dry seeds, probably by transcriptional repression via histone deacetylation. Accordingly, HDA9 transcript is abundant in dry seeds and becomes reduced during imbibition in wild-type seeds. The proposed function of HDA9 is opposite to that of its homologous genes HDA6 and HDA19, which have been reported to repress embryonic properties in germinated seedlings.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Transcriptoma , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Germinação , Histona Desacetilases/genética , Filogenia , Dormência de Plantas , Ribulose-Bifosfato Carboxilase/genética , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Regulação para Cima
2.
Annu Rev Plant Biol ; 63: 615-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22404469

RESUMO

Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Proteínas de Arabidopsis/metabolismo , Comunicação Celular , Diferenciação Celular , Genes de Plantas/fisiologia , Meristema/citologia , Meristema/metabolismo , Modelos Biológicos , Caules de Planta/citologia , Caules de Planta/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regeneração , Transdução de Sinais , Transcrição Gênica
3.
Curr Biol ; 19(17): 1485-90, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19646874

RESUMO

Development of seed plant embryos is polarized along the apical-basal axis. This polarization occurs in the absence of cell migration and culminates in the establishment of two distinct pluripotent cell populations: the shoot apical meristem (SAM) and root meristem (RM), which postembryonically give rise to the entire shoot and root systems of the plant. The acquisition of genetic pathways that delimit root from shoot during embryogenesis must have played a pivotal role during land plant evolution because roots evolved after shoots in ancestral vascular plants and may be shoot-derived organs. However, such pathways are very poorly understood. Here we show that RM establishment in the model plant Arabidopsis thaliana requires apical confinement of the Class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) proteins PHABULOSA (PHB) and PHAVOLUTA (PHV), which direct both SAM development and shoot lateral organ polarity. Failure to restrict PHB and PHV expression apically via a microRNA-dependent pathway prevents correct elaboration of the embryonic root development program and results in embryo lethality. As such, repression of a fundamental shoot development pathway is essential for correct root development. Additionally, our data suggest that a single patterning process, based on HD-ZIP III repression, mediates both apical-basal and radial polarity in the embryo and lateral organ polarity in the shoot.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/embriologia , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Sementes/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Ácidos Indolacéticos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Meristema/genética , Meristema/metabolismo , MicroRNAs/fisiologia , Raízes de Plantas/embriologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Ligação a RNA , Sementes/genética , Proteínas Serrate-Jagged
4.
Plant Cell ; 21(4): 1070-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19376933

RESUMO

The PLETHORA (PLT) stem cell transcription factors form a developmentally instructive protein gradient in Arabidopsis thaliana roots. Histone acetylation is known to facilitate gene transcription and plays an important role in developmental processes. Here, we show that histone acetyltransferase GCN5 (for general control nonderepressible 5) attenuates the PLT gradient. Based on genetic evidence, we establish that GCN5 is essential for root stem cell niche maintenance and acts in the PLT pathway. The GCN5-associated factor ADA2b (for alteration/deficiency in activation 2b) is also positioned in the PLT pathway and regulates PLT expression, similar to GCN5. Both GCN5 and ADA2b mediate proliferation of the transit amplifying cells, but ADA2b does not affect stem cell niche maintenance. Overexpression of PLT2 rescues the stem cell niche defect of gcn5 mutants, indicating that GCN5 regulation of PLT expression is essential for maintenance of the root stem cell niche. We conclude that histone acetylation complexes play an important role in shaping a developmentally instructive gradient in the root.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/citologia , Proliferação de Células , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histona Acetiltransferases , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Gen Virol ; 84(Pt 12): 3485-3494, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645930

RESUMO

The movement protein (MP) of Cowpea mosaic virus (CPMV) forms tubules through plasmodesmata in infected plants thus enabling virus particles to move from cell to cell. Localization studies of mutant MPs fused to GFP in protoplasts and plants identified several functional domains within the MP that are involved in distinct steps during tubule formation. Coinoculation experiments and the observation that one of the C-terminal deletion mutants accumulated uniformly in the plasma membrane suggest that dimeric or multimeric MP is first targeted to the plasma membrane. At the plasma membrane the MP quickly accumulates in peripheral punctuate spots, from which tubule formation is initiated. One of the mutant MPs formed tubules containing virus particles on protoplasts, but could not support cell-to-cell movement in plants. The observations that this mutant MP accumulated to a higher level in the cell than wt MP and did not accumulate in the cell wall opposite infected cells suggest that breakdown or disassembly of tubules in neighbouring, uninfected cells is required for cell-to-cell movement.


Assuntos
Comovirus/metabolismo , Pisum sativum/virologia , Proteínas Virais/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Comovirus/patogenicidade , Dimerização , Microscopia Confocal , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Proteínas do Movimento Viral em Plantas , Mutação Puntual , Estrutura Terciária de Proteína , Protoplastos/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...