Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(4): 595-614, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267654

RESUMO

Miro proteins are universally conserved mitochondrial calcium-binding GTPases that regulate a multitude of mitochondrial processes, including transport, clearance, and lipid trafficking. The exact role of Miro in these functions is unclear but involves binding to a variety of client proteins. How this binding is operated at the molecular level and whether and how it is important for mitochondrial health, however, remains unknown. Here, we show that known Miro interactors-namely, CENPF, Trak, and MYO19-all use a similar short motif to bind the same structural element: a highly conserved hydrophobic pocket in the first calcium-binding domain of Miro. Using these Miro-binding motifs, we identified direct interactors de novo, including MTFR1/2/1L, the lipid transporters Mdm34 and VPS13D, and the ubiquitin E3-ligase Parkin. Given the shared binding mechanism of these functionally diverse clients and its conservation across eukaryotes, we propose that Miro is a universal mitochondrial adaptor coordinating mitochondrial health.


Assuntos
Cálcio , Mitocôndrias , Humanos , Cálcio/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Homeostase , Lipídeos , Proteínas Mitocondriais/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas/metabolismo
2.
FEBS Lett ; 598(10): 1292-1298, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38268324

RESUMO

Lipid trafficking is critical for the biogenesis and expansion of organelle membranes. Lipid transport proteins (LTPs) have been proposed to facilitate lipid transport at contact sites between organelles. Despite the fundamental importance of LTPs in cell physiology, our knowledge on the mechanisms of interorganelle lipid distribution remains poor due to the scarcity of assays to monitor lipid flux in vivo. In this review, we highlight the recent development of a versatile method named METALIC (Mass tagging-Enabled Tracking of Lipids in Cells), which uses a combination of enzymatic mass tagging and mass spectrometry to track lipid flux between organelles inside living cells. We discuss the methodology, its distinct advantages, limitations as well as its potential to unearth the pipelines of lipid transport and LTP function in vivo.


Assuntos
Metabolismo dos Lipídeos , Humanos , Transporte Biológico , Animais , Espectrometria de Massas/métodos , Organelas/metabolismo , Lipídeos/química
3.
Nat Cell Biol ; 24(6): 996-1004, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654841

RESUMO

The distinct activities of organelles depend on the proper function of their membranes. Coordinated membrane biogenesis of different organelles necessitates lipid transport from their site of synthesis to their destination. Several factors have been proposed to participate in lipid distribution, but despite its basic importance, in vivo evidence linking the absence of putative transport pathways to specific transport defects remains scarce. A reason for this scarcity is the near absence of in vivo lipid trafficking assays. Here we introduce a versatile method named METALIC (Mass tagging-Enabled TrAcking of Lipids In Cells) to track interorganelle lipid flux inside cells. In this strategy, two enzymes, one directed to a 'donor' and the other to an 'acceptor' organelle, add two distinct mass tags to lipids. Mass-spectrometry-based detection of lipids bearing the two mass tags is then used to quantify exchange between the two organelles. By applying this approach, we show that the ERMES and Vps13-Mcp1 complexes have transport activity in vivo, and unravel their relative contributions to endoplasmic reticulum-mitochondria lipid exchange.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Transporte Biológico , Retículo Endoplasmático/metabolismo , Lipídeos , Mitocôndrias/metabolismo
4.
Methods Mol Biol ; 2477: 349-379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524127

RESUMO

Genome-wide transposon mutagenesis followed by deep sequencing allows the genome-wide mapping of growth-affecting loci in a straightforward and time-efficient way.SAturated Transposon Analysis in Yeast (SATAY) takes advantage of a modified maize transposon that is highly mobilizable in S. cerevisiae. SATAY allows not only the genome-wide mapping of genes required for growth in select conditions (such as genetic interactions or drug sensitivity/resistance), but also of protein sub-domains, as well as the creation of gain- and separation-of-function alleles. From strain preparation to the mapping of sequencing reads, we detail all the steps for the making and analysis of SATAY libraries in any S. cerevisiae lab, requiring only ordinary equipment and access to a Next-Gen sequencing platform.


Assuntos
Elementos de DNA Transponíveis , Saccharomyces cerevisiae , Alelos , Mapeamento Cromossômico , Elementos de DNA Transponíveis/genética , Mutagênese Insercional , Saccharomyces cerevisiae/genética
5.
PLoS Biol ; 20(3): e3001576, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35320264

RESUMO

Mitochondria and the complex endomembrane system are hallmarks of eukaryotic cells. To date, it has been difficult to manipulate organelle structures within single live cells. We developed a FluidFM-based approach to extract, inject, and transplant organelles from and into living cells with subcellular spatial resolution. The technology combines atomic force microscopy, optical microscopy, and nanofluidics to achieve force and volume control with real-time inspection. We developed dedicated probes that allow minimally invasive entry into cells and optimized fluid flow to extract specific organelles. When extracting single or a defined number of mitochondria, their morphology transforms into a pearls-on-a-string phenotype due to locally applied fluidic forces. We show that the induced transition is calcium independent and results in isolated, intact mitochondria. Upon cell-to-cell transplantation, the transferred mitochondria fuse to the host cells mitochondrial network. Transplantation of healthy and drug-impaired mitochondria into primary keratinocytes allowed monitoring of mitochondrial subpopulation rescue. Fusion with the mitochondrial network of recipient cells occurred 20 minutes after transplantation and continued for over 16 hours. After transfer of mitochondria and cell propagation over generations, donor mitochondrial DNA (mtDNA) was replicated in recipient cells without the need for selection pressure. The approach opens new prospects for the study of organelle physiology and homeostasis, but also for therapy, mechanobiology, and synthetic biology.


Assuntos
DNA Mitocondrial , Mitocôndrias , Cálcio , Homeostase , Mitocôndrias/fisiologia , Organelas
6.
EMBO J ; 41(7): e109998, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35188676

RESUMO

The organelles of eukaryotic cells differ in their membrane lipid composition. This heterogeneity is achieved by the localization of lipid synthesizing and modifying enzymes to specific compartments, as well as by intracellular lipid transport that utilizes vesicular and non-vesicular routes to ferry lipids from their place of synthesis to their destination. For instance, the major and essential phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), can be produced by multiple pathways and, in the case of PE, also at multiple locations. However, the molecular components that underlie lipid homeostasis as well as the routes allowing their distribution remain unclear. Here, we present an approach in which we simplify and rewire yeast phospholipid synthesis by redirecting PE and PC synthesis reactions to distinct subcellular locations using chimeric enzymes fused to specific organelle targeting motifs. In rewired conditions, viability is expected to depend on homeostatic adaptation to the ensuing lipostatic perturbations and on efficient interorganelle lipid transport. We therefore performed genetic screens to identify factors involved in both of these processes. Among the candidates identified, we find genes linked to transcriptional regulation of lipid homeostasis, lipid metabolism, and transport. In particular, we identify a requirement for Csf1-an uncharacterized protein harboring a Chorein-N lipid transport motif-for survival under certain rewired conditions as well as lipidomic adaptation to cold, implicating Csf1 in interorganelle lipid transport and homeostatic adaptation.


Assuntos
Lipídeos de Membrana , Organelas , Transporte Biológico , Homeostase , Metabolismo dos Lipídeos/genética , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Organelas/metabolismo , Fosfolipídeos/genética , Fosfolipídeos/metabolismo
7.
Contact (Thousand Oaks) ; 5: 25152564221101974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37366504

RESUMO

The non-vesicular transport of lipids between organelles mediated by lipid transport proteins (LTPs) is a key determinant of organelle biogenesis and function. Despite performing a vital function in organelle homeostasis, none of the LTP-encoding genes identified so far are truly essential, even in the simple genome of yeast, suggesting widespread redundancy. In line with this fact, it has been found that a number of LTPs have overlapping functions, making it challenging to assign unique roles for an individual LTP in lipid distribution. In our genetic screens under stringent conditions in which the distinct function of an LTP might become essential, we stumbled upon Csf1, a highly conserved protein with a Chorein-N motif found in other lipid transporters and unraveled a new function for Csf1 in lipid remodeling and homeoviscous adaptation of the lipidome. Here, we further speculate on the potential mechanisms of how the putative function of Csf1 in lipid transport could be intimately connected to its role in lipid remodeling across organelles.

8.
Cell Rep ; 37(8): 110034, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818558

RESUMO

Endogenous metabolites, environmental agents, and therapeutic drugs promote formation of covalent DNA-protein crosslinks (DPCs). Persistent DPCs compromise genome integrity and are eliminated by multiple repair pathways. Aberrant Top1-DNA crosslinks, or Top1ccs, are processed by Tdp1 and Wss1 functioning in parallel pathways in Saccharomyces cerevisiae. It remains obscure how cells choose between diverse mechanisms of DPC repair. Here, we show that several SUMO biogenesis factors (Ulp1, Siz2, Slx5, and Slx8) control repair of Top1cc or an analogous DPC lesion. Genetic analysis reveals that SUMO promotes Top1cc processing in the absence of Tdp1 but has an inhibitory role if cells additionally lack Wss1. In the tdp1Δ wss1Δ mutant, the E3 SUMO ligase Siz2 stimulates sumoylation in the vicinity of the DPC, but not SUMO conjugation to Top1. This Siz2-dependent sumoylation inhibits alternative DPC repair mechanisms, including Ddi1. Our findings suggest that SUMO tunes available repair pathways to facilitate faithful DPC repair.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Cisteína Endopeptidases/metabolismo , DNA/metabolismo , Reparo do DNA/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Diester Fosfórico Hidrolases/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/genética , Sumoilação/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
10.
Comput Struct Biotechnol J ; 19: 3556-3563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257835

RESUMO

Information on the co-evolution of amino acid pairs in a protein can be used for endeavors such as protein engineering, mutation design, and structure prediction. Here we report a method that captures significant determinants of proteins using estimated co-evolution information to identify networks of residues, termed "residue communities", relevant to protein function. On the benchmark dataset (67 proteins with both catalytic and allosteric residues), the Pearson's correlation between the identified residues in the communities at functional sites is 0.53, and it is higher than 0.8 by taking account of conserved residues derived from the method. On the endoplasmic reticulum-mitochondria encounter structure complex, the results indicate three distinguishable residue communities that are relevant to functional roles in the protein family, suggesting that the residue communities could be general evolutionary signatures in proteins. Based on the method, we provide a webserver for the scientific community to explore the signatures in protein families, which establishes a powerful tool to analyze residue-level profiling for the discovery of functional sites and biological pathway identification. This web-server is freely available for non-commercial users at https://kornmann.bioch.ox.ac.uk/leri/services/ecs.html, neither login nor e-mail required.

11.
Dev Cell ; 56(11): 1560-1561, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102103

RESUMO

The development of the lens in the vertebrate eye requires the degradation of all organelles. In a recent issue of Nature, Morishita et al. (2021) identify a conserved phospholipase that appears to achieve this by simply digesting organelle membranes away.


Assuntos
Cristalino , Fosfolipases , Animais , Organelas , Vertebrados
12.
PLoS Genet ; 17(3): e1009414, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690632

RESUMO

Indole-3-acetic acid (IAA) is the most common, naturally occurring phytohormone that regulates cell division, differentiation, and senescence in plants. The capacity to synthesize IAA is also widespread among plant-associated bacterial and fungal species, which may use IAA as an effector molecule to define their relationships with plants or to coordinate their physiological behavior through cell-cell communication. Fungi, including many species that do not entertain a plant-associated life style, are also able to synthesize IAA, but the physiological role of IAA in these fungi has largely remained enigmatic. Interestingly, in this context, growth of the budding yeast Saccharomyces cerevisiae is sensitive to extracellular IAA. Here, we use a combination of various genetic approaches including chemical-genetic profiling, SAturated Transposon Analysis in Yeast (SATAY), and genetic epistasis analyses to identify the mode-of-action by which IAA inhibits growth in yeast. Surprisingly, these analyses pinpointed the target of rapamycin complex 1 (TORC1), a central regulator of eukaryotic cell growth, as the major growth-limiting target of IAA. Our biochemical analyses further demonstrate that IAA inhibits TORC1 both in vivo and in vitro. Intriguingly, we also show that yeast cells are able to synthesize IAA and specifically accumulate IAA upon entry into stationary phase. Our data therefore suggest that IAA contributes to proper entry of yeast cells into a quiescent state by acting as a metabolic inhibitor of TORC1.


Assuntos
Fungos/efeitos dos fármacos , Fungos/enzimologia , Ácidos Indolacéticos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Elementos de DNA Transponíveis , Relação Dose-Resposta a Droga , Ativação Enzimática , Fungos/genética , Ácidos Indolacéticos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Inibidores de Proteínas Quinases/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos
13.
J Cell Biol ; 219(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33090183

RESUMO

Mitochondria are dynamic organelles with essential roles in signaling and metabolism. We recently identified a cellular structure called the mitochondrial-derived compartment (MDC) that is generated from mitochondria in response to amino acid overabundance stress. How cells form MDCs is unclear. Here, we show that MDCs are dynamic structures that form and stably persist at sites of contact between the ER and mitochondria. MDC biogenesis requires the ER-mitochondria encounter structure (ERMES) and the conserved GTPase Gem1, factors previously implicated in lipid exchange and membrane tethering at ER-mitochondria contacts. Interestingly, common genetic suppressors of abnormalities displayed by ERMES mutants exhibit distinct abilities to rescue MDC formation in ERMES-depleted strains and are incapable of rescuing MDC formation in cells lacking Gem1. Thus, the function of ERMES and Gem1 in MDC biogenesis may extend beyond their conventional role in maintaining mitochondrial phospholipid homeostasis. Overall, this study identifies an important function for ER-mitochondria contacts in the biogenesis of MDCs.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/genética , Mitocôndrias/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Mol Biol Cell ; 31(12): 1302-1313, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267208

RESUMO

Eukaryotic cells are compartmentalized into organelles by intracellular membranes. While the organelles are distinct, many of them make intimate contact with one another. These contacts were first observed in the 1950s, but only recently have the functions of these contact sites begun to be understood. In yeast, the endoplasmic reticulum (ER) makes extensive intermembrane contacts with the plasma membrane (PM), covering ∼40% of the PM. Many functions of ER-PM contacts have been proposed, including nonvesicular lipid trafficking, ion transfer, and as signaling hubs. Surprisingly, cells that lack ER-PM contacts grow well, indicating that alternative pathways may be compensating for the loss of ER-PM contact. To better understand the function of ER-PM contact sites we used saturating transposon mutagenesis to identify synthetic lethal mutants in a yeast strain lacking ER-PM contact sites. The strongest hits were components of the ESCRT complexes. The synthetic lethal mutants have low levels of some lipid species but accumulate free fatty acids and lipid droplets. We found that only ESCRT-III components are synthetic lethal, indicating that Vps4 and other ESCRT complexes do not function in this pathway. These data suggest that ESCRT-III proteins and ER-PM contact sites act in independent pathways to maintain lipid homeostasis.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Lipídeos/genética , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Transporte Proteico/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Biol Chem ; 401(6-7): 811-820, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32049644

RESUMO

Endosymbiosis, the beginning of a collaboration between an archaeon and a bacterium and a founding step in the evolution of eukaryotes, owes its success to the establishment of communication routes between the host and the symbiont to allow the exchange of metabolites. As far as lipids are concerned, it is the host that has learnt the symbiont's language, as eukaryote lipids appear to have been borrowed from the bacterial symbiont. Mitochondria exchange lipids with the rest of the cell at membrane contact sites. In fungi, the endoplasmic reticulum-mitochondria encounter structure (ERMES) is one of the best understood membrane tethering complexes. Its discovery has yielded crucial insight into the mechanisms of intracellular lipid trafficking. Despite a wealth of data, our understanding of ERMES formation and its exact role(s) remains incomplete. Here, I endeavour to summarise our knowledge on the ERMES complex and to identify lingering gaps.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Lipídeos/química , Mitocôndrias/metabolismo , Membrana Celular/química , Metabolismo dos Lipídeos , Mitocôndrias/química
16.
Science ; 367(6477): 507-508, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32001641
17.
Mol Cell ; 77(5): 1066-1079.e9, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31902667

RESUMO

Naturally occurring or drug-induced DNA-protein crosslinks (DPCs) interfere with key DNA transactions if not repaired in a timely manner. The unique family of DPC-specific proteases Wss1/SPRTN targets DPC protein moieties for degradation, including stabilized topoisomerase-1 cleavage complexes (Top1ccs). Here, we describe that the efficient DPC disassembly requires Ddi1, another conserved predicted protease in Saccharomyces cerevisiae. We found Ddi1 in a genetic screen of the tdp1 wss1 mutant defective in Top1cc processing. Ddi1 is recruited to a persistent Top1cc-like DPC lesion in an S phase-dependent manner to assist in the eviction of crosslinked protein from DNA. Loss of Ddi1 or its putative protease activity hypersensitizes cells to DPC trapping agents independently from Wss1 and 26S proteasome, implying its broader role in DPC repair. Among the potential Ddi1 targets, we found the core component of Pol II and show that its genotoxin-induced degradation is impaired in ddi1. We propose that the Ddi1 protease contributes to DPC proteolysis.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Animais , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Proteólise , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9 , Spodoptera , Transcrição Gênica
18.
Mol Biol Cell ; 30(22): 2814-2826, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509475

RESUMO

Hereditary sensory and autonomic neuropathy (HSAN) types IA and IC (IA/C) are caused by elevated levels of an atypical class of lipid named 1-deoxysphingolipid (DoxSL). How elevated levels of DoxSL perturb the physiology of the cell and how the perturbations lead to HSAN IA/C are largely unknown. In this study, we show that C26-1-deoxydihydroceramide (C26-DoxDHCer) is highly toxic to the cell, while C16- and C18-DoxDHCer are less toxic. Genome-wide genetic screens and lipidomics revealed the dynamics of DoxSL accumulation and DoxSL species responsible for the toxicity over the course of DoxSL accumulation. Moreover, we show that disruption of F-actin organization, alteration of mitochondrial shape, and accumulation of hydrophobic bodies by DoxSL are not sufficient to cause complete cellular failure. We found that cell death coincides with collapsed ER membrane, although we cannot rule out other possible causes of cell death. Thus, we have unraveled key principles of DoxSL cytotoxicity that may help to explain the clinical features of HSAN IA/C.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Esfingolipídeos/metabolismo , Actinas/metabolismo , Ceramidas/toxicidade , Neuropatias Hereditárias Sensoriais e Autônomas/fisiopatologia , Metabolismo dos Lipídeos , Lipidômica , Lipídeos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/genética
19.
Micromachines (Basel) ; 10(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426349

RESUMO

Mechanobiology studies from the last decades have brought significant insights into many domains of biological research, from development to cellular signaling. However, mechano-regulation of subcellular components, especially membranous organelles, are only beginning to be unraveled. In this paper, we take mitochondrial mechanobiology as an example to discuss recent advances and current technical challenges in this field. In addition, we discuss the needs for future toolbox development for mechanobiological research of intracellular organelles.

20.
Nat Commun ; 10(1): 1287, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894536

RESUMO

Close proximities between organelles have been described for decades. However, only recently a specific field dealing with organelle communication at membrane contact sites has gained wide acceptance, attracting scientists from multiple areas of cell biology. The diversity of approaches warrants a unified vocabulary for the field. Such definitions would facilitate laying the foundations of this field, streamlining communication and resolving semantic controversies. This opinion, written by a panel of experts in the field, aims to provide this burgeoning area with guidelines for the experimental definition and analysis of contact sites. It also includes suggestions on how to operationally and tractably measure and analyze them with the hope of ultimately facilitating knowledge production and dissemination within and outside the field of contact-site research.


Assuntos
Membrana Celular/metabolismo , Células Eucarióticas/metabolismo , Membranas Intracelulares/metabolismo , Organelas/metabolismo , Terminologia como Assunto , Animais , Fracionamento Celular/métodos , Membrana Celular/ultraestrutura , Células Eucarióticas/ultraestrutura , Humanos , Membranas Intracelulares/ultraestrutura , Microscopia/instrumentação , Microscopia/métodos , Organelas/ultraestrutura , Proteínas/genética , Proteínas/metabolismo , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...